全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Structures and Encapsulation Motifs of Functional Molecules Probed by Laser Spectroscopic and Theoretical Methods

DOI: 10.3390/s100403519

Keywords: supersonic jet, laser spectroscopy, host-guest complex, crown ether, calixarene

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report laser spectroscopic and computational studies of host/guest hydration interactions between functional molecules (hosts) and water (guest) in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6) and calix[4]arene (C4A). The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF), mass-selected resonance enhanced multiphoton ionization (REMPI) and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the structures of the complexes, and key interactions forming the specific complexes.

References

[1]  Gokel, G.W. Crown Ethers and Cryptands; Royal Society of Chemistry: Cambridge, UK, 1991.
[2]  Dobler, M. Ionophores and their Structures; Wiley-Interscience: New York, NY, USA, 1981.
[3]  Gutsche, C.D. “Calixarenes”. In Monographs in Supramolecular Chemistry; Stoddart, J.F., Ed.; Royal Society of Chemistry: Cambridge, UK, 1989.
[4]  Cram, D.J.; Cram, J.M. “Container molecules and their guests”. In Monographss in Supramolecular Chemistry; Stoddart, J.F., Ed.; Royal Society of Chemistry: Cambridge, UK, 1994.
[5]  Gutsche, C.D. “Calixarenes revisited”. In Monographs in Supramolecular Chemistry; Stoddart, J.F., Ed.; Royal Society of Chemistry: Cambridge, UK, 1998.
[6]  Stuart, A.M.; Vidal, J.A. Perfluoroalkylated 4,13-diaza-18-crown-6 ethers: synthesis, phase-transfer catalysis, and recycling studies. J. Org. Chem?2007, 72, 3735–3740.
[7]  Chekholov, A.N. (18-crown-6)potassium tris(thiocyanato)nickelate(II): Synthesis and crystal structure. Russ. J. Coord. Chem?2008, 34, 434–437.
[8]  Atwood, J.L.; Koutsoantonis, G.A.; Raston, C.L. Purification of C60 and C70 by selective complexation with calixarenes. Nature?1994, 368, 229.
[9]  Suzuki, T.; Nakashima, K.; Shinkai, S. Very Convenient and efficient purification method for fullerene (C60) with 5,11,17,23,29,35,41,47-Octa-tert-butylcalix[8]arene-49,50,51,52,53,54,55,56-octol. Chem. Lett?1994, 23, 699.
[10]  Izatt, R.M.; Rytting, J.H.; Nelson, D.P.; Haymore, B.L.; Christensen, J.J. Binding of alkali metal ions by cyclic polyethers: significance in ion transport processes. Science?1969, 164, 443.
[11]  Izatt, R.M.; Nelson, D.P.; Rytting, J.H.; Haymore, B.L.; Christensen, J.J. Calorimetric study of the interaction in aqueous solution of several uni- and bivalent metal ions with the cyclic polyether dicyclohexyl-18-crown-6 at 10,25, and 40.deg. J. Am. Chem. Soc?1971, 93, 1619.
[12]  Izatt, R.M.; Terry, R.E.; Haymore, B.L.; Hansen, L.D.; Dalley, N.K.; Avondet, A.G.; Christensen, J.J. Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25.degree.C and .mu. = 0.1. J. Am. Chem. Soc?1976, 98, 7620.
[13]  Izatt, R.M.; Terry, R.E.; Nelson, D.P.; Chan, Y.; Eatough, D.J.; Bradshaw, J.S.; Hansen, L.D.; Christensen, J.J. Calorimetric titration study of the interaction of some uni- and bivalent cations with benzo-15-crown-5, 18-crown-6, dibenzo-24-crown-8, and dibenzo-27-crown-9 in methanol-water solvents, at 25.degree.C and .mu. = 0.1. J. Am. Chem. Soc?1976, 98, 7626.
[14]  Lamb, J.D.; Izatt, R.M.; Swain, C.S.; Christensen, J.J. A systematic study of the effect of macrocycle ring size and donor atom type on the log K, .DELTA.H, and T.DELTA.S of reactions at 25.degree.C in methanol of mono- and divalent cations with crown ethers. J. Am. Chem. Soc.?1980, 102, 475.
[15]  Pedersen, C.J.; Frensdorff, H.K. Macrocyclic polyethers and their complexes. Angew. Chem. Int. Ed?1972, 11, 16.
[16]  Glendening, E.D.; Feller, D.; Thompson, M.A. An Ab Initio Investigation of the Structure and Alkali Metal Cation Selectivity of 18-Crown-6. J. Am. Chem. Soc?1994, 116, 10657.
[17]  More, M.B.; Ray, D.; Armentrout, P.D. Intrinsic affinities of alkali cations for 15-crown-5 and 18-crown-6: bond dissociation energies of gas-phase M+?crown ether complexes. J. Am. Chem. Soc?1999, 121, 417–423.
[18]  Hill, S.E.; Feller, D. Theoretical study of cation/ether complexes: 15-crown-5 and its alkali metal complexes. Int. J. Mass Spectrom?2000, 201, 41.
[19]  Peiris, D.M.; Yang, Y.; Ramanathan, R.; Williams, K.R.; Watson, C.; Eyler, J.R. Infrared multiphoton dissociation of electrosprayed crown ether complexes. Int. J. Mass Spectrom. Ion Process?1996, 157/158, 365.
[20]  Anderson, J.D.; Paulsen, E.S.; Dearden, D. Alkali metal binding energies of dibenzo-18-crown-6: experimental and computational results. Int. J. Mass Spectrom?2003, 227, 63.
[21]  Armentrout, P.B. Cation–ether complexes in the gas phase: thermodynamic insight into molecular recognition. Int. J. Mass Spectrom?1999, 193, 227.
[22]  Feller, D. Ab Initio Study of M+:18-Crown-6 Microsolvation. J. Phys. Chem. A?1997, 101, 2723–2731.
[23]  Rodriguez, J.D.; Lisy, J.M. Infrared spectroscopy of gas-phase hydrated K+:18-crown-6 complexes: Evidence for high energy conformer trapping using the argon tagging method. Int. J. Mass. spectrom?2009, 283, 135–139.
[24]  Rodriguez, J.D.; Lisy, J.M. Infrared spectroscopy of multiply charged metal ions: methanol-solvated divalent manganese 18-crown-6 ether systems. J. Phys. Chem. A?2009, 113, 6462–6467.
[25]  Rodriguez, J.D.; Vaden, T.D.; Lisy, J.M. Infrared spectroscopy of ionophore-model systems: hydrated alkali metal ion 18-crown-6 ether complexes. J. Am. Chem. Soc?2009, 131, 17277–17285.
[26]  Shubert, V.A.; Zwier, T.S. IR-IR-UV Hole-burning: conformation specific IR spectra in the face of UV spectral overlap. J. Phys. Chem. A?2007, 111, 13283–13286.
[27]  Shubert, V.A.; James, W.H., III; Zwier, T.S. jet-cooled electronic and vibrational spectroscopy of crown ethers: benzo-15-crown-5 ether and 4′ -amino-benzo-15-crown-5 ether. J. Phys. Chem. A?2009, 113, 8055–8066.
[28]  Shubert, V.A.; Müller, C.W.; Zwier, T.S. Water’s role in reshaping a macrocycle’s binding pocket: infrared and ultraviolet spectroscopy of Benzo-15-crown-5-(H2O)n and 4′-aminobenzo-15-crown-5-(H2O)n, n = 1, 2. J. Phys. Chem. A?2009, 113, 8067–8079.
[29]  Kusaka, R.; Inokuchi, Y.; Ebata, T. Laser spectroscopic study on the conformations and the hydrated structures of benzo-18-crown-6-ether and dibenzo-18-crown-6-ether in supersonic jets. Phys. Chem. Chem. Phys?2007, 9, 4452–4459.
[30]  Kusaka, R.; Inokuchi, Y.; Ebata, T. Structure of hydrated clusters of dibenzo-18-crown-6-ether in a supersonic jet—encapsulation of water molecules in the crown cavity. Phys. Chem. Chem. Phys?2008, 10, 6238–6244.
[31]  Kusaka, R.; Inokuchi, Y.; Ebata, T. Water-mediated conformer optimization in benzo-18-crown-6-ether/water system. Phys. Chem. Chem. Phys?2009, 11, 9132–9140.
[32]  Ebata, T.; Hodono, Y.; Ito, T.; Inokuchi, Y. Electronic spectra of jet-cooled calix[4]arene and its van der Waals clusters: Encapsulation of a neutral atom in a molecular bowl. J. Chem. Phys?2007, 126, 141101.
[33]  Hontama, N.; Inokuchi, Y.; Ebata, T.; Dedonder-Lardeux, C.; Jouvet, C.; Xantheas, S.S. Structure of the Calix[4]arene-(H2O) cluster: The world’s smallest cup of water. J. Phys. Chem. A?2010, 114, 2967.
[34]  Ebata, T. Study on the structure and vibrational dynamics of functional molecules and molecular clusters by double resonance vibrational spectroscopy. Bull. Chem. Soc. Jpn?2009, 82, 127.
[35]  Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheesman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Munnucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Asamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Ausitin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M. W.; Johnson, B.; Chen, W.; Wong, M.W.; Conzalez, C.; Pople, J.A. Gaussian 03. Revision D.02,; Gaussian, Inc: Wallingford, CT, USA, 2004.
[36]  M?ller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev?1934, 46, 618.
[37]  Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys?1989, 90, 1007.
[38]  Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys?1992, 96, 6796.
[39]  Kendall, R.A.; Aprà, E.; Bernholdt, D.E.; Bylaska, E.J.; Dupuis, M.; Fann, G.I.; Harrison, R.J.; Ju, J.; Nichols, J.A.; Nieplocha, J.; Straatsma, T.P.; Windus, T.L.; Wong, A.T. High performance computational chemistry: An overview of NWChem a distributed parallel application. Comp. Phys. Comm?2000, 128, 260–283. High Performance Computational Chemistry Group (2003) NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.6. Pacific Northwest National Laboratory: Richland, WA, 99352, USA.
[40]  Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—consistent molecular orbital methods. XII. further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys?1972, 56, 2257.
[41]  Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys?1970, 19, 553.
[42]  Xantheas, S.S. On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J. Chem. Phys?1996, 104, 8821.
[43]  Bright, D.; Truter, M.R. Crystal structures of complexes between alkali-metal salts and cyclic polyethers. Part I. Complex formed between rubidium sodium isothiocyanate and 2,3,11,12-dibenzo-1,4,7,10,13,16-hexaoxocyclo-octadeca-2,11-diene (‘dibenzo-18-crown-6’). J. Chem. Soc. B?1970, 8, 1544.
[44]  Müller, A.; Talbot, F.; Leutwyler, S. S1/S2 exciton splitting in the (2-pyridone)2 dimer. J. Chem. Phys?2002, 116, 2836.
[45]  Wessel, J.E.; Syage, J.A. Excitonic interactions in naphthalene clusters. J. Phys. Chem?1990, 94, 737.
[46]  Herzberg, G. Molecular Spectra And Molecular Structure Volume II. Infrared and Raman Spectra of Polyatomic Molecules; Van Nostrand Reinhold Company: New York, NY, USA, 1945.
[47]  Yi, J.Y.; Ribblett, J.W.; Pratt, D.W. Rotationally resolved electronic spectra of 1,2-dimethoxybenzene and the 1,2-dimethoxybenzene?water complex. J. Phys. Chem. A?2005, 109, 9456–9464.
[48]  Bühl, M.; Wipff, G. Hydronium Ion complex of 18-crown-6: where are the protons? a density functional study of static and dynamic properties. J. Am. Chem. Soc?2002, 124, 4473–4480.
[49]  Goutev, N.; Matsuura, H. Hydrogen Bonding in Chloroform Solutions of Ethylenedioxy Ethers. Spectroscopic Evidence of Bifurcated Hydrogen Bonds. J. Phys. Chem. A?2001, 105, 4741–4748.
[50]  Hang, Z.S.; Miller, R.E. High-resolution near-infrared spectroscopy of water dimer. J. Chem. Phys?1989, 91, 6613.
[51]  Fukuhara, K.; Tachikake, M.; Matsumoto, S.; Matsuura, H. Raman spectroscopic study of the hydrates of 18-crown-6. J. Phys. Chem?1995, 99, 8617–8623.
[52]  Ebata, T.; Nagao, K.; Mikami, N. Mode-dependent anharmonic coupling between OH stretching and intermolecular vibrations of the hydrogen-bonded clusters of phenol. Chem. Phys?1998, 231, 199–204.
[53]  Nibu, Y.; Marui, R.; Shimada, H. Infrared spectroscopy of hydrogen-bonded 2-fluoropyridine?water clusters in supersonic jets. J. Phys. Chem. A?2006, 110, 9627–9632.
[54]  Ebata, T.; Hontama, N.; Inokuchi, Y.; Haino, T.; Xantheas, S.S. Encapsulation of Arn complexes by calix[4]arene: endo- vs. exo-complexes. Phys. Chem. Chem. Phys. in press.?
[55]  Xantheas, S.S. Cooperativity and hydrogen bonding network in water clusters. Chem. Phys?2000, 258, 225.
[56]  Pribble, R.N.; Zwier, T.S. Size-specific infrared spectra of benzene-(H2O)n clusters (n = 1 through 7): evidence for noncyclic (H2O)n Structures. Science?1994, 265, 75–79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133