Motion perception is the process through which one gathers information on the dynamic visual world, in terms of the speed and movement direction of its elements. Motion sensation takes place from the retinal light sensitive elements, through the visual thalamus, the primary and higher visual cortices. In the present review we aim to focus on the extrageniculo-extrastriate cortical and subcortical visual structures of the feline and macaque brain and discuss their functional role in visual motion perception. Special attention is paid to the ascending tectofugal system that may serve for detection of the visual environment during self-motion.
References
[1]
Nakayama, K. Biological image motion processing: A review. Vis. Res?1985, 25, 625–660.
[2]
Braunstein, M.L. Sensitivity of the observer to transformations of the visual field. J. Exp. Psychol?1966, 72, 638–687.
[3]
Simpson, J.I.; Leonard, C.S.; Soodak, R.E. The accessory optic-system. Analyzer of self-motion. Ann. N. Y. Acad. Sci?1988, 545, 170–179.
[4]
Goodale, M.A.; Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci?1992, 15, 20–25.
[5]
Ungerleider, L.G.; Mishkin, M. Two cortical visual systems. In Analysis of Visual Behavior; Ingle, D.J., Goodale, M.A., Mansfield, R.J.W., Eds.; MIT Press: Cambridge, MA, USA, 1982; pp. 549–586.
[6]
Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. Lond?1962, 160, 106–154.
[7]
Hubel, D.H.; Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. Lond?1968, 195, 215–243.
[8]
Snowden, R.J.; Treue, T.; Erickson, R.G.; Anderson, R.A. The response of area Mt and V1 neurons to transparent motion. J. Neurosci?1991, 11, 2768–2785.
[9]
Movshon, J.A.; Newsome, W.T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkey. J. Neurosci?1996, 16, 7733–7741.
[10]
Clifford, C.W.G.; Ibbotson, M.R. Fundamental mechanisms of visual motion detection: models, cells and functions. Prog. Neurobiol?2002, 68, 409–437.
[11]
Andersen, R.A. Neural mechanisms of visual motion perception in primates. Neuron?1997, 18, 865–872.
[12]
Snowden, R.J.; Freeman, T.C.A. The visual perception of motion. Curr. Biol?2004, 14, R828–R831.
[13]
Adelson, E.H.; Movshon, J.A. Phenomenal coherence of moving visual patterns. Nature?1982, 300, 523–525.
[14]
Welch, L. The perception of moving plaids reveals two motion-processing stages. Nature?1989, 337, 734–736.
[15]
Derrington, A; Suero, M. Motion of complex patterns is computed from the perceived motions of their components. Vision Res?1991, 31, 139–149.
Li, B.; Chen, Y.; Li, B.W.; Wang, L.H.; Diao, Y.C. Pattern and component motion selectivity in cortical area PMLS of the cat. Eur. J. Neurosci?2001, 14, 690–700.
[18]
Dacey, D.M.; Peterson, B.B.; Robinson, F.R.; Gamlin, P.D. Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron?2003, 37, 15–27.
[19]
Hendry, S.H.; Reid, R.C. The koniocellular pathway in primate vision. Annu. Rev. Neurosci?2000, 23, 127–53.
[20]
Kuffler, S. Discharge patterns and functional organization of the mammalian retina. J. Neurophysiol?1953, 16, 37–68.
[21]
Croner, L.J.; Kaplan, E. Receptive fields of P and M ganglion cells across the primate retina. Vision Res?1995, 35, 7–24.
[22]
Barlow, H.B.; Levick, W.R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol?1965, 178, 477–504.
[23]
Jones, E.G. The Thalamus; Plenum Press: New York, NY, USA, 1985; pp. 261–319.
[24]
Kaplan, E.; Shapley, R.M. X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol?1982, 330, 125–143.
[25]
Cavanagh, P.; Tyler, C.W.; Favreau, O.E. Perceived velocity of moving chromatic gratings. J. Opt. Soc. Am. A?1984, 1, 893–899.
[26]
Ramachandran, V.S.; Gregory, R.L. Does color provide an input to human motion perception? Nature?1978, 275, 55–56.
[27]
Gur, M.; Snodderly, D.M. Direction selectivity in V1 of alert monkeys: evidence for parallel pathways for motion processing. J Physiol?2007, 585, 383–400.
[28]
Livingstone, M.S.; Hubel, D.H. Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? J. Neurosci?1988, 8, 4334–4339.
[29]
Shipp, S.; Zeki, S. The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex. Eur. J. Neurosci?1989, 1, 309–332.
[30]
Nassi, J.J.; Callaway, E.M. Specialized circuits from primary visual cortex to V2 and area MT. Neuron?2007, 55, 799–808.
[31]
Felleman, D.J.; Burkhalter, A.; Van Essen, D.C. Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. J. Comp. Neurol?1997, 379, 21–47.
[32]
Nassi, J.J.; Callaway, E.M. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci?2009, 10, 360–372.
[33]
Allman, J.M.; Kaas, J.H. A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Res?1974, 81, 199–213.
[34]
Zeki, S.M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol?1974, 236, 549–573.
[35]
Van Essen, D.C. Visual areas of the mammalian cerebral cortex. Ann. Rev. Neurosci?1979, 2, 227–261.
[36]
Zeki, S.M. Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. Brain Res?1971, 28, 338–340.
[37]
Zeki, S.M. Cortical projections from two prestriate areas in the monkey. Brain Res?1971, 34, 19–35.
[38]
Maunsell, J.H.; Van Essen, D.C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol?1983, 49, 1127–1147.
[39]
Albright, T.D.; Desimone, R.; Gross, C.G. Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol?1984, 51, 16–31.
[40]
Newsome, W.T.; Wurtz, R.H.; Dürsteler, M. R.; Mikami, A. Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci?1985, 5, 825–840.
[41]
Rashbass, C. The relationship between saccadic and smooth tracking eye movements. J. Physiol?1961, 159, 326–338.
[42]
Suzuki, D.A.; Noda, H.; Kase, M. Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J. Neurophysiol?1981, 46, 1120–1139.
[43]
Suzuki, D.A.; Keller, E.L. Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp. Brain Res?1984, 53, 473–478.
[44]
Movshon, J.A.; Newsome, W.T. Functional characteristics of striate cortical neurons projecting to MT in the macaque. Soc. Neurosci. Abstr?1984, 10(933).
[45]
Bradley, D.C.; Chang, G.C.; Andersen, R.A. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature?1998, 392, 714–717.
[46]
Grunewald, A.; Bradley, D.C.; Andersen, R.A. Neural correlates of structure-from-motion perception in macaque V1 and MT. J. Neurosci?2002, 22, 6195–6207.
[47]
Shipp, S.; Zeki, S. The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex. Eur. J. Neurosci?1989, 1, 333–354.
[48]
Vaina, L.M.; Cowey, A.; Eskew, R.T., Jr.; LeMay, M.; Kemper, T. Regional cerebral correlates of global motion perception: evidence from unilateral cerebral brain damage. Brain?2001, 124, 310–321.
[49]
Perge, A.J.; Borghuis, B.G.; Bours, R.J.E.; Lankheet, M.J.M.; van Wezel, R.J.A. Temporal dynamics of direction tuning in motion-sensitive macaque area MT. J. Neurophysiol?2005, 93, 2104–2116.
[50]
Serences, J.T.; Boynton, G.M. The representation of behavioral choice for motion in human visual cortex. J. Neurosci?2007, 27, 12893–12899.
[51]
Zeki, S.; Watson, J.D.G.; Frackowiak, R.S.J. Going beyond the information given: the relation of illusory visual motion to brain activity. Proc. Biol. Sci?1993, 252, 215–222.
[52]
Williford, T.; Maunsell, J.H. Effects of spatial attention on contrast response functions in macaque area V4. J. Neurophysiol?2006, 96, 40–54.
[53]
Martínez-Trujillo, J.; Treue, S. Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron?2002, 35, 365–370.
[54]
Patzwahl, D.R.; Treue, S. Combining spatial and feature-based attention within the receptive field of MT neurons. Vision Res?2009, 49, 1188–1193.
[55]
Treue, S. Neural correlates of attention in primate visual cortex. Trends Neurosci?2001, 24, 295–300.
[56]
Lui, L.L.; Bourne, J.A.; Rosa, M.G.P. Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus). Eur. J. Neurosci?2007, 25, 1780–1792.
[57]
Ungerleider, L.G.; Desimone, R.J. Cortical connections of visual area MT in the macaque. Comp. Neurol?1986, 248, 190–222.
[58]
Maunsell, J.H.; van Essen, D.C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci?1983, 3, 2563–2586.
[59]
Eifuku, S.; Wurtz, R.H. Response to motion in extrastriate area MSTl: center-surround interactions. J. Neurophysiol?1998, 80, 282–296.
[60]
Britten, K.H.; Van Wezel, R.J. Area MST and heading perception in macaque monkeys. Cereb. Cortex?2002, 12, 692–701.
[61]
Rizzolatti, G.; Fogassi, L.; Gallese, V. Parietal cortex: from sight to action. Curr. Opin. Neurobiol?1997, 7, 562–567.
[62]
Kalaska, J.F.; Scott, S.H.; Cisek, P.; Sergio, L.E. Cortical control of reaching movements. Curr. Opin. Neurobiol?1997, 7, 849–859.
[63]
Culham, J.C.; Cavina-Pratesi, C.; Singhal, A. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia?2006, 44, 2668–2684.
[64]
Sakata, H.; Taira, M.; Murata, A.; Mine, S. Neural Mechanisms of visual guidance of hand action in the parietal cortex of monkey. Cereb. Cortex?1995, 5, 429–438.
[65]
Sakata, H.; Taira, M.; Kusunoki, M.; Murata, A.; Tanaka, Y. The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci?1997, 20, 350–357.
[66]
Motter, B.C.; Mountcastle, V.B. The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. J. Neurosci?1981, 1, 3–26.
[67]
Collewijn, H.; Curio, G.; Grüsser, O.J. Spatially selective visual attention and generation of eye pursuit movements. Experiments with sigma-movement. Hum. Neurobiol?1982, 1, 129–139.
[68]
Carman, J.B.; Cowan, W.M.; Powell, T.P.; Webster, K.E. A bilateral cortico-striate projection. J. Neurol. Neurosurg. Psychiatry?1965, 28, 71–77.
[69]
Atkinson, J. Development of optokinetic nystagmus in the human infant and monkey infant: an analogue to development in kittens. In Developmental Neurobiology of Vision; Freeman, R.D., Ed.; Plenum Press: New York, NY, USA, 1979; pp. 277–287.
[70]
Atkinson, J.; Braddick, O.J. Acuity, contrast sensitivity and accommodation in infancy. In The Development of Perception; Aslin, R.N., Alberts, J.R., Petersen, M.R., Eds.; Academic Press: New York, NY, USA, 1981; Volume 2, pp. 245–278.
[71]
Croner, L.J.; Albright, T.D. Seeing the big picture: integration of image cues in the primate visual system. Neuron?1999, 24, 777–789.
Ungerleider, L.G.; Galkin, T.W.; Desimone, R.; Gattass, R. Cortical connections of area V4 in the macaque. Cereb. Cortex?2008, 18, 477–499.
[74]
Rosenquist, A.C. Connections of visual Cortical Areas in the Cat. In Cerebral Cortex; Peters, A., Jones, E.G., Eds.; Plenum Press: New York, NY, USA, 1985; Volume 3. Visual Cortex,, pp. 81–117.
[75]
Mucke, L.; Norita, M.; Benedek, G.; Creutzfeldt, O. Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Exp. Brain Res?1982, 46, 1–11.
[76]
Olson, C.R.; Graybiel, A.M. Ectosylvian visual area of the cat: location, retinotopic organization, and connections. J. Comp. Neurol?1987, 261, 277–294.
[77]
Olson, C.R.; Graybiel, A.M. An outlying visual area in the cerebral cortex of the cat. Prog. Brain Res?1983, 58, 239–245.
[78]
Benedek, G.; Jang, E.K.; Hicks, T.P. Physiological properties of visually responsive neurons in the insular cortex of the cat. Neurosci. Lett?1986, 64, 269–274.
[79]
Hicks, T.P.; Benedek, G.; Thurlow, G.A. Organization and properties of neurons in a visual area within the insular cortex of the cat. J. Neurophysiol?1988, 60, 397–421.
[80]
Norita, M.; Hicks, T.P.; Benedek, G.; Katoh, Y.Y. Organization of cortical and subcortical projections to the feline insular visual area, IVA. J. Hirnforsch?1991, 32, 119–134.
[81]
Reinoso-Suarez, F.; Roda, J.M. Topographical organization of the cortical afferent connections to the cortex of the anterior ectosylvian sulcus in the cat. Exp. Brain Res?1985, 59, 313–324.
[82]
Hoshino, K.; Horie, M.; Nagy, A.; Berényi, A.; Benedek, G.; Norita, M. Direct synaptic connections between superior colliculus afferents and thalamo-insular projection neurons in the feline suprageniculate nucleus: A double-labeling study with WGA-HRP and kainic acid. Neurosci. Res?2009, doi:10.1016/j.neures.2009.09.02.
[83]
Norita, M.; Mucke, L.; Benedek, G.; Albowitz, B.; Katoh, Y.Y.; Creutzfeldt, O.D. Connections of the anterior ectosylvian visual area (AEV). Exp. Brain Res?1986, 62, 225–240.
[84]
Miceli, D.; Reperant, J.; Ptito, M. Intracortical connections of the anterior ectosylvian and lateral suprasylvian visual areas in the cat. Brain Res?1985, 347, 291–298.
[85]
Hardy, H.; Heimer, L.; Switzer, R.; Watkins, D. Simultaneous demonstration of horseradish peroxydase and acetylcholinesterase. Neurosci. Lett?1976, 3, 1–15.
[86]
Katoh, Y.Y.; Benedek, G. Organization of the colliculo-suprageniculate pathway in the cat: a wheat germ agglutinin-horseradish peroxydase study. J. Comp. Neurol?1995, 352, 381–397.
[87]
Katoh, Y.Y.; Benedek, G.; Deura, S. Bilateral projections from the superior colliculus to the suprageniculate nucleus in the cat: a WGA-HRP/double fluorescent tracing study. Brain Res?1995, 669, 298–302.
[88]
Crapse, T.B.; Sommer, M.A. Frontal eye field neurons with spatial representations predicted by their subcortical input. J. Neurosci?2009, 29, 5308–5318.
[89]
Hoshino, K.; E?rdegh, G.; Nagy, A.; Benedek, G.; Norita, M. Overlap of nigrothalamic terminals and thalamostriatal neurons in the feline lateralis medialis-suprageniculate nucleus. Acta Physiol. Hung?2009, 96, 203–211.
[90]
Katoh, Y.Y.; Arai, R.; Benedek, G. Bifurcating projections from the cerebellar fastigial neurons to the thalamic suprageniculate nucleus and to the superior colliculus. Brain Res?2000, 864, 308–311.
[91]
Guirado, S.; Real, M.A.; Dávila, J.C. The ascending tectofugal visual system in amniotes: New insights. Brain Res. Bull?2005, 66, 290–296.
[92]
Rokszin, A.; Márkus, Z.; Braunitzer, G.; Berényi, A.; Wypych, M.; Waleszczyk, W.J.; Benedek, G.; Nagy, A. Spatio-temporal visual properties in the ascending tectofugal system. Cent. Eur. J. Biol?2009. (in press).
[93]
Benedek, G.; Hicks, T.P. The visual insular cortex of the cat: organization, properties and modality specificity. Prog. Brain Res?1988, 75, 271–278.
[94]
Benedek, G.; Perény, J.; Kovács, G.; Fischer-Szatmári, L.; Katoh, Y.Y. Visual, somatosensory, auditory and nociceptive modality properties in the feline suprageniculate nucleus. Neuroscience?1997, 78, 179–189.
[95]
Tusa, R.J.; Palmer, L.A.; Rosenquist, A.C. The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol?1978, 177, 213–235.
[96]
Scannell, J.W.; Sengpiel, F.; Tovee, M.J.; Benson, P.J.; Blakemore, C.; Young, M.P. Visual motion processing in the anterior ectosylvian sulcus of the cat. J. Neurophysiol?1996, 76, 895–907.
[97]
Benedek, G.; Mucke, L.; Norita, M.; Albowitz, B.; Creutzfeldt, O.D. Anterior ectosylvian visual area (AEV) of the cat: physiological properties. Prog. Brain Res?1988, 75, 245–255.
[98]
Middlebrooks, J.C.; Clock, A.E.; Xu, L.; Green, D.M. A panoramic code for sound location by cortical neurons. Science?1994, 264, 842–844.
[99]
Benedek, G.; Sztriha, L.; Kovács, G. Coding of spatial co-ordinates on neurons of the feline visual association cortex. Neuroreport?2000, 11, 1–4.
[100]
Stein, B.E.; Meredith, M.A. The Merging of the Sense; The MIT Press: Cambridge, MA, USA, 1993.
[101]
De Valois, K.K.; De Valois, R.L.; Yund, E.W. Responses of striate cortex cells to grating and checkerboard patterns. J. Physiol?1979, 291, 483–505.
[102]
Pinter, R.B.; Harris, L.R. Temporal and spatial response characteristics of the cat superior colliculus. Brain Res?1981, 207, 73–94.
[103]
Enroth-Cugell, C.; Robson, J.G. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol?1966, 187, 517–552.
[104]
Zumbroich, T.; Price, D.J.; Blakemore, C. Development of spatial and temporal selectivity in the suprasylvian visual cortex of the cat. J. Neurosci?1988, 8, 2713–2728.
[105]
Anderson, S.J.; Burr, D.C. Spatial and temporal selectivity of the human motion detection system. Vision Res?1985, 25, 1147–1154.
[106]
Burr, D.C.; Ross, J. Contrast sensitivity at high velocities. Vision Res?1982, 22, 479–484.
[107]
Burr, D.C.; Morrone, M.C.; Ross, J. Local and global visual processing. Vision Res?1986, 26, 749–757.
[108]
Morrone, M.C.; Di Stefano, M.; Burr, D.C. Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. J. Neurophysiol?1986, 56, 969–986.
[109]
Brosseau-Lachaine, O.; Faubert, J.; Casanova, C. Functional subregions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat. Cereb. Cortex?2001, 11, 989–1001.
[110]
Palmer, L.A.; Rosenquist, A.C.; Tusa, R.J. The retinotopic organization of lateral suprasylvian visual areas in the cat. J. Comp. Neurol?1978, 177, 237–256.
[111]
Ogashawara, K.; McHaffie, J.G.; Stein, B.E. Two visual corticotectal systems in cat. J. Neurophysiol?1984, 52, 1226–1245.
[112]
Hardy, S.C.; Stein, B.E. Small lateral suprasylvian cortex lesion produce visual neglect and decreased visual activity in the superior colliculus. J. Comp. Neurol?1988, 273, 527–542.
[113]
Payne, B.R.; Lomber, S.G.; Geeraerts, S.; van der Gucht, E.; Vandenbusschen, E. Reversible visual hemineglect. Proc. Natl. Acad. Sci. USA?1996, 93, 290–294.
[114]
Pasternak, T.; Horn, K.M.; Maunsell, J.H. Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat. Vis. Nerosci?1989, 3, 365–375.
[115]
Rudolph, K.K.; Pasternak, T. Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. Cereb. Cortex?1996, 6, 814–822.
[116]
Kiefer, W.; Kruger, K.; Strauss, G.; Berlucchi, G. Considerable deficits in the detection performance of the cat after lesion of the suprasylvian visual cortex. Exp. Brain Res?1989, 75, 208–212.
[117]
Krüger, K.; Kiefer, W.; Groh, A.; Dinse, H.R.; von Seelen, W. The role of the lateral suprasylvian cortex of the cat in object-background interactions: permanent deficits following lesions. Exp. Brain Res?1993, 97, 40–60.
[118]
Spear, P.D.; Baumann, T.P. Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. J. Neurophysiol?1975, 38, 1403–1420.
[119]
Blakemore, C.; Zumbroich, T.J. Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. J. Physiol. (London)?1987, 389, 569–603.
[120]
Rauschecker, J.P.; von Grünau, M.W.; Poulin, C. Centrifugal organization of direction preferences in the cat’s lateral suprasylvian visual cortex and its relation to flow field processing. J. Neurosci?1987, 7, 943–958.
[121]
von Grünau, M.W.; Zumbroich, T.J.; Poulin, C. Visual receptive field properties in the posterior suprasylvian cortex of the cat: a comparison between areas PMLS and PLLS. Vision Res?1987, 27, 343–356.
[122]
Gizzi, M.S.; Katz, E.; Movshon, J.A. Spatial and temporal analysis by neurons in the representation of the central visual field in the cat’s lateral suprasylvian visual cortex. Vis. Neurosci?1990, 5, 463–468.
[123]
Gizzi, M.S.; Katz, E.; Schumer, R.A.; Movshon, J.A. Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. J. Neurophysiol?1990, 63, 1529–1543.
[124]
Minville, K.; Casanova, C. Spatial frequency processing in the posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat’s lateral posterior-pulvinar complex. Neurosciences?1998, 84, 699–711.
[125]
Li, B.; Li, B.W.; Chen, Y.; Wang, L.H.; Diao, Y.C. Response properties of PMLS and PLLS neurons to stimulated optic flow patterns. J. Neurosci?2000, 12, 1534–1544.
[126]
Brosseau-Lachaine, O.; Faubert, J.; Casanova, C. Functional sub-regions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat. Cereb. Cortex?2001, 11, 989–1001.
[127]
Morrone, M.C.; Di Stefano, M.; Burr, D.C. Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. J. Neurophysiol?1986, 56, 969–986.
[128]
von Grünau, M.; Frost, B.J. Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area. Exp. Brain Res?1983, 49, 84–92.
[129]
Yin, T.C.; Greenwood, M. Visuomotor interactions in responses of neurons in the middle and lateral suprasylvian cortices of the behaving cat. Exp. Brain Res?1992, 88, 15–32.
[130]
Sherk, H.; Fowler, G.A. Lesions of extrastriate cortex and consequences for visual guidance during locomotion. Exp. Brain Res?2002, 144, 159–171.
[131]
Camarda, R.; Rizzolatti, G. Visual receptive fields in the lateral suprasylvian area (Clare-Bishop area) of the cat. Brain Res?1976, 101, 427–443.
[132]
Toyama, K.; Mizobe, K.; Akase, E.; Kaihara, T. Neuronal responsiveness in areas 19 and 21a, and the posteromedial lateral suprasylvian cortex of the cat. Exp. Brain Res?1994, 99, 289–301.
[133]
Hamada, T. Neural response to the motion of textures in the lateral suprasylvian area of cats. Behav. Brain Res?1987, 25, 175–185.
[134]
Danilov, Y.; Moore, R.J.; King, V.R.; Spear, P.D. Are neurons in cat posteromedial lateral suprasylvian visual cortex orientation sensitive? Tests with bars and gratings. Vis. Neurosci?1995, 12, 141–151.
[135]
Dreher, B.; Wang, C.; Turlejski, K.J.; Djavadian, R.L.; Burke, W. Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. Cereb. Cortex?1996, 6, 585–599.
[136]
Villeneuve, M.Y.; Ptito, M.; Casanova, C. Global motion integration in the postero-medial part of the lateral suprasylvian cortex in the cat. Exp. Bran Res?2006, 172, 485–497.
[137]
Dreher, B. Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanisms of information processing. In Visual Neuroscience; Pettigrew, J.D., Sanderson, K.J., Levick, W.R., Eds.; Cambridge University Press: New York, NY, USA, 1986; pp. 290–315.
[138]
Sherk, H. Location and connections of visual cortical areas in the cat’s suprasylvian sulcus. J. Comp. Neurol?1986, 247, 1–31.
[139]
Grant, S.; Shipp, S. Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: A physiological and connectional study. Vis. Neurosci?1991, 6, 315–338.
[140]
Scannell, J.W.; Blakemore, C.; Young, M.P. Analysis of connectivity in the cat cerebral cortex. J. Neurosci?1995, 15, 1463–1483.
[141]
Kim, J.N.; Mulligan, K.; Sherk, H. Simulated optic flow and extrastriate cortex. I. Optic flow versus texture. J. Neurophysiol?1997, 77, 554–561.
[142]
Sherk, H.; Mulligan, K.; Kim, J.N. Neuronal responses in extrastriate cortex to objects in optic flow fields. Vis. Neurosci?1997, 14, 879–895.
[143]
Robitaille, N.; Lepore, F; Bacon, B.A.; Ellemberg, D.; Guillemot, J.P. Receptive field properties and sensitivity to edges defined by motion in the postero-lateral lateral suprasylvian (PLLS) area of the cat. Brain Res?2008, 1187, 82–94.
[144]
Lomber, S.G. Behavioral cartography of visual functions in cat parietal cortex: areal and laminar dissociations. Prog. Brain Res?2001, 134, 265–284.
[145]
Vanduffel, W.; Vandenbusschen, E.; Singer, W.; Orban, G.A. A metabolic study of orientation discrimination and detection tasks in the cat. Eur. J. Neurol?1997, 9, 1314–1328.
[146]
Sprague, J.M.; De Weerd, P.; Xiao, D.K.; Vandenbusschen, E.; Orban, G.A. Orientation discrimination in the cat: its cortical locus: II. Extrastriate cortical areas. J. Comp. Neurol?1996, 364, 32–50.
[147]
Ouellette, B.G.; Minville, K.; Faubert, J.; Casanova, C. Simple and complex visual motion response properties in the anterior medial bank of the lateral suprasylvian cortex. Neuroscience?2004, 123, 231–245.
[148]
Symonds, L.L.; Rosenquist, A.C. Corticocortical connections among visual areas in the cat. J. Comp. Neurol?1984, 229, 1–38.
[149]
Symonds, L.L.; Rosenquist, A.C. Laminar origins of visual corticocortical connections in the cat. J. Comp. Neurol?1984, 229, 39–47.
[150]
Miceli, D.; Repérant, J.; Ptito, M. Intracortical connections of the anterior ectosylvian and lateral suprasylvian visual areas in the cat. Brain Res?1985, 347, 291–298.
[151]
Zeki, S.; Watson, J.D.; Lueck, C.J.; Friston, K.J.; Kennard, C.; Frackowiak, R.S. A direct demonstration of functional specialization in human cortex. J. Neurosci?1991, 11, 641–649.
[152]
Fries, W. The projection from the lateral geniculate nucleus to the peristriate cortex of the macaque monkey. Proc. R. Soc. Lond. B. Biol?1981, 213, 73–86.
[153]
Yukie, M.; Iwai, E. Direct projection from the dorsal lateral geniculate nucleus to the peristriate cortex in macaque monkey. J. Comp. Neurol?1981, 201, 81–97.
[154]
Standage, G.P.; Benevento, L.A. The organization of connections between the pulvinar and visual area MT in the macaque monkey. Brain Res?1983, 262, 288–294.
[155]
Gross, C.G. Contribution of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and the inferior temporal cortex. Neuropsychologia?1991, 29, 497–515.
[156]
Rodman, H.R.; Gross, C.G.; Albright, T.D. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J. Neurosci?1989, 9, 2033–2050.
[157]
Rodman, H.R.; Gross, C.G.; Albright, T.D. Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J. Neurosci?1990, 10, 1154–1164.
[158]
Schoenfeld, M.A.; Heinze, H.-J.; Woldorff, M.G. Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex. Neuroimage?2002, 17, 769–779.
[159]
Felleman, D.J.; Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex?1991, 1, 1–47.
[160]
Payne, B.R. Evidence for visual cortical area homologs in cat and macaque monkey. Cereb. Cortex?1993, 3, 1–25.
[161]
Stepniewska, I.; Qi, H.X.; Kaas, J.H. Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? Eur. J. Neurosci?1999, 11, 469–480.
[162]
Gutierrez, C.; Cusick, C.G. Area V1 in macaque monkeys projects to multiple histochemically defined subdivisions of the inferior pulvinar complex. Brain Res?1997, 765, 349–356.
[163]
Cavada, C.; Compa?y, T.; Hernández-González, A.; Reinoso-Suárez, F. Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal, parietal and temporal association cortices. J. Chem. Neuroanat?1995, 8, 245–257.
[164]
Robinson, D.L. Functional contributions of the primate pulvinar. Prog. Brain Res?1993, 95, 371–380.
[165]
Grieve, K.L.; Acu?a, C.; Cudeiro, J. The primate pulvinar nuclei: vision and action. Trends Neurosci?2000, 23, 35–39.