In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.
References
[1]
Sanfeliu, A.; Andrade-Cetto, J. Ubiquitous networking robotics in urban settings. Proceedings of IROS Workshop Netw. Rob. Syst, Beijing, China, October 15, 2006; pp. 14–18.
[2]
Capitán, J.; Mantecón, D.; Soriano, P.; Ollero, A. Autonomous perception techniques for urban and industrial fire scenarios. Proceedings of IEEE Int. Workshop Safety, Secur. Rescue Rob, Roma, Italy, September 27–29, 2007; pp. 1–6.
[3]
Grime, S.; Durrant-Whyte, H.F. Data fusion in decentralized sensor networks. Control Eng. Practice?1994, 2, 849–863, doi:10.1016/0967-0661(94)90349-2.
[4]
Sukkarieh, S.; Nettleton, E.; Kim, J.H.; Ridley, M.; Goktogan, A.; Durrant-Whyte, H. The ANSER project: Data fusion across multiple uninhabited air vehicles. Int. J. Robot. Res?2003, 22, 505–539, doi:10.1177/02783649030227005.
[5]
Barbosa, M.; Ramos, N.; Lima, P. Mermaid - Multiple-robot middleware for intelligent decision-making. Proceedings of the 6th IFAC/EURON Sym. Intell. Auton. Vehicles, Toulouse, France, September 3–5, 2007.
[6]
Metta, G.; Fitzpatrick, P.; Natale, L. Yarp: Yet another robot platform. Int. J Adv. Robotic Syst?2006, 3, 43–48.
[7]
Valencia, R.; Teniente, E.; Trulls, E.; Andrade-Cetto, J. 3D Mapping for urban serviece robots. Proceedings of IEEE /RSJ Int. Conf. Intell. Robots Syst, Saint Louis, MO, USA, October 11–15, 2009; pp. 3076–3081.
[8]
Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, UK, 2005.
[9]
Ortega, A.; Haddad, I.; Andrade-Cetto, J. Graph-based segmentation of range data with applications to 3D urban mapping. Proceedings of European Conf. Mobile Robotics, Mlini, Croatia, September 23–25, 2009; pp. 193–198.
[10]
Ortega, A.; Dias, B.; Teniente, E.; Bernardino, A.; Gaspar, J.; Andrade-Cetto, J. Calibrating an Outdoor Distributed Camera Network using Laser Range Finder Data. Proceedings of IEEE /RSJ Int. Conf. Intell. Robots Syst, Saint Louis, MO, USA, October 11–15, 2009; pp. 303–308.
Ila, V.; Porta, J.; Andrade-Cetto, J. Reduced state representation in delayed State SLAM. Proceedings of IEEE /RSJ Int. Conf. Intell. Robots Syst, Saint Louis, MO, USA, October 11–15, 2009; pp. 4919–4924.
Konolige, K.; Agrawal, M.; Solà, J. Large scale visual odometry for rough terrain. Proceedings of the 13th Int. Sym. Robot. Res, Hiroshima, Japan, November 26–29, 2007.
[15]
Ila, V.; Andrade-Cetto, J.; Sanfeliu, A. Outdoor delayed-state visually augmented odometry. Proceedings of the 6th IFAC/EURON Sym. Intell. Auton. Vehicles, Toulouse, France, September 3–5, 2007.
[16]
Uhlmann, J. Introduction to the algorithmics of data association in Multiple-Target Tracking. In Handbook of Multisensor Data Fusion; Liggins, M.E., Hall, D.E., Llinas, J., Eds.; CRC Press: Boca Raton, FL, USA, 2001.
[17]
Corominas-Murtra, A.; Mirats-Tur, J.; Sanfeliu, A. Action evaluation for mobile robot global localization in cooperative environments. Robot. Auton. Syst?2008, 56, 807–818, doi:10.1016/j.robot.2008.06.009.
[18]
Mirats-Tur, J.; Zinggerling, C.; Corominas-Murtra, A. Geographical information systems for map based navigation in urban environments. Robot. Auton. Syst?2009, 57, 922–930, doi:10.1016/j.robot.2009.06.003.
[19]
Bradski, G. Computer vision face tracking for use in a perceptual user interface. Intel Techn. J?1998, 1–15.
[20]
Viola, P.; Jones, M. Robust real-time face detection. Int. J. Comput. Vision?2004, 57, 137–154, doi:10.1023/B:VISI.0000013087.49260.fb.
[21]
Gon?alves, N.; Sequeira, J. Multirobot task assignment in active surveillance. Proceedings of the 14th Portuguese Conf. Artificial Intell, Aveiro, Portugal, October 12–15, 2009; 5816, pp. 310–322.
[22]
Spaan, M.; Gon?alves, N.; Sequeira, J. Multirobot Coordination by Auctioning POMDPs. Proceedings of IEEE Int. Conf. Robot. Automat, Anchorage, AK, USA, May 3–8, 2010. (to appear).
[23]
Kaelbling, L.; Littman, M.; Cassandra, A. Planning and acting in partially observable stochastic domains. Artif. Intell?1998, 101, 99–134, doi:10.1016/S0004-3702(98)00023-X.
[24]
Pahliani, A.; Spaan, M.; Lima, P. Decision-theoretic robot guidance for active cooperative perception. Proceedings of IEEE /RSJ Int. Conf. Intell. Robots Syst, Saint Louis, MO, USA, October 11–15, 2009; pp. 4837–4842.
[25]
Nettleton, E.; Thrun, S.; Durrant-Whyte, H.; Sukkarieh, S. Decentralised SLAM with low-bandwidth communication for teams of vehicles. In Field and Service Robots, Recent Advances in Research and Applications; Springer: Berlin, Germany, 2003; Volume 24, pp. 179–188.
[26]
Capitán, J.; Merino, L.; Caballero, F.; Ollero, A. Delayed-state information filter for cooperative decentralized tracking. Proceedings of IEEE Int. Conf. Robot. Automat, Kobe, Japan, May 12–17, 2009; pp. 3865–3870.
[27]
Bourgault, F.; Durrant-Whyte, H. Communication in general decentralized filters and the coordinated search strategy. Proceedings of the 7th Int. Conf. Information Fusion, Stockholm, Sweden, June 28–July 1, 2004; pp. 723–730.
[28]
Lima, P.; Messias, J.; Santos, J.; Estilita, J.; Barbosa, M.; Ahmad, A.; Carreira, J. ISocRob 2009 team description paper. Proceedings of Robocup Sym, Graz, Austria, June 25–July 5, 2009.
[29]
Corominas, A.; Mirats, J.; Sandoval, O.; Sanfeliu, A. Real-time software for mobile robot simulation and experimentation in cooperative environments. Proceedings of the 1st Int. Conf. Simulation, Modelling, Programming Autonomous Robots, Venice, Italy, November 3–7, 2008; 5325, pp. 135–146.
[30]
Corominas-Murtra, A.; Mirats-Tur, J.; Sanfeliu, A. Efficient active global localization for mobile robots operating in large and cooperative environments. Proceedings of IEEE Int. Conf. Robot. Automat, Pasadena, CA, USA, May 19–23, 2008; pp. 2758–2763.
[31]
Fox, D.; Burgard, W.; Kruppa, H.; Thrun, S. A probabilistic approach to collaborative multi-robot localization. Auton. Robot?2000, 8, 325–344, doi:10.1023/A:1008937911390.
[32]
Corominas-Murtra, A.; Mirats-Tur, J.; Sanfeliu, A. Integrating asynchronous observations for mobile robot position tracking in cooperative environments. Proceedings of IEEE /RSJ Int. Conf. Intell. Robots Syst, Saint Louis, MO, USA, October 11–15, 2009; pp. 3850–3855.
[33]
Gilbert, A.; Illingworth, J.; Bowden, R. Scale invariant action recognition using compound features mined from dense spatio-temporal corners. Proceedings of the 10th European Conf. Comput. Vision, Marseille, France, October 12–18, 2008; 5302, pp. 222–233.
[34]
Kaew-Trakul-Pong, P.; Bowden, R. A real-time adaptive visual surveillance system for tracking low resolution colour targets in dynamically changing scenes. Image Vision Comput?2003, 21, 913–929, doi:10.1016/S0262-8856(03)00076-3.
[35]
Figueira, D.; Moreno, P.; Bernardino, A.; Gaspar, J.; Santos-Victor, J. Optical flow based detection in mixed human robot environments. Proceedings of the 5th Int. Sym. Visual Computing, Las Vegas, NV, USA, November 30–December 2, 2009; 5875, pp. 223–232.
[36]
Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. Proceedings of the 19th IEEE Conf. Comput. Vision Pattern Recog, San Diego, CA, USA, June 20–25, 2005; pp. 886–893.
[37]
Dalal, N.; Triggs, B.; Schmid, C. Human detection using oriented histograms of flow and appearance. Proceedings of the 9th European Conf. Comput. Vision, Graz, Austria, May 7–13, 2006; 3951, pp. 428–441.
[38]
Moreno, P.; Bernardino, A.; Santos-Victor, J. Waving detection using the local temporal consistency of flow-based features for real-time applications. Proceedings of the 6th Int. Conf. Image Anal. Recog, Halifax, Canada, June 6–8, 2009; 5627, pp. 886–895.
[39]
Pla, F.; Ribeiro, P.; Santos-Victor, J.; Bernardino, A. Extracting motion features for visual human activity representation. Proceedings of the 2nd Iberian Conf. on Pattern Recognition and Image Analysis, Estoril, Portugal, June 7–9, 2005; 3522, pp. 537–544.
[40]
Ribeiro, P.; Moreno, P.; Santos-Victor, J. Boosting with temporal consistent learners: An application to human activity recognition. Proceedings of the 3rd Int. Sym. Visual Computing, Lake Tahoe, NV, November 26–28, 2007; 4841, pp. 464–475.
[41]
Schuldt, A.; Laptev, I.; Caputo, B. Recognizing human actions: A local SVM approach. Proceedings of the 17th IAPR Int. Conf. Pattern Recog, Cambridge, UK, August 23–26, 2004; 3, pp. 32–36.
[42]
Dollar, P.; Rabaud, V.; Cottrell, G.; Belongie, S. Behavior recognition via sparse spatio-temporal features. Proceedings of the 14th Int. Conf. Comput. Communications and Networks, San Diego, CA, USA, October 17–19, 2005; pp. 65–72.
[43]
Harris, C.G.; Stephens, M. A combined corner edge detector. Proceedings of Alvey Vision Conf, Manchester, UK, August 31–September 2, 1988; pp. 189–192.
[44]
Laptev, I.; Marszalek, M.; Schmid, C.; Rozenfeld, B. Learning realistic human actions from movies. Proceedings of the 22nd IEEE Conf. Comput. Vision Pattern Recog, Anchorage, AL, USA, June 24–26, 2008; pp. 1–8.
[45]
Agrawal, R.; Srikant, R. Fast algorithms for mining association rules in large databases. Proceedings of the 20th Int. Conf. Very Large Data Bases, Santiago de Chile, Chile, September 12–15, 1994; pp. 487–499.
[46]
Caballero, F.; Merino, L.; Gil, P.; Maza, I.; Ollero, A. A probabilistic framework for entire WSN localization using a mobile robot. Robot. Auton. Syst?2008, 56, 798–806, doi:10.1016/j.robot.2008.06.003.
[47]
Gilbert, A.; Illingworth, J.; Capitán, J.; Bowden, R.; Merino, L. Accurate fusion of robot, camera and wireless sensors for surveillance applications. Proceedings of the 9th IEEE Int. Workshop Visual Surveillance, Kyoto, Japan, October 3, 2009.