This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery.
References
[1]
Chang, C.L.; Chang, C.W; Hsu, C.M.; Luo, C.H.; Chiou, J.C. Power-Efficient Wireless Sensor for Physiological Signal Acquisition. J. Micro/Nanolith. MEMS MOEMS?2009, 8, doi:10.1117/1.3124190.
[2]
Proulx, J.; Clifford, R.; Sorensen, S.; Dah-Jye, L.; Archibald, J. Development and Evaluation of a Bluetooth EKG Monitoring Sensor. Proceedings of the 19th IEEE International Symposium on Computer-Based Medical Systems, Salt Lake City, UT, USA, June 22–23, 2006; pp. 507–511.
[3]
Morais, R.; Fernandes, M.A.; Matos, S.G.; Ser?dio, C.; Ferreira, P.J.S.G.; Reis, M.J.C.S. A ZigBee Multi-Powered Wireless Acquisition Device for Remote Sensing Applications in Precision Viticulture. Comput. Electron. Agric?2008, 62, 94–106.
[4]
Breit, S.; Spieker, S.; Schulz, J.B.; Gasser, T. Long-Term EMG Recordings Differentiate between Parkinsonian and Essential Tremor. J. Neurol?2008, 255, 103–111.
[5]
Fay, L.; Misra, V.; Sarpeshkar, R. A Micropower Electrocardiogram Amplifier. IEEE Trans. Biomed. Circ. Syst?2009, 3, 312–320.
[6]
Griss, P.; Tolvanen-Laakso, H.K.; Merilainen, P.; Stemme, G. Characterization of Micromachined Spiked Biopotential Electrodes. IEEE Trans. Biomed. Eng?2002, 49, 597–604.
[7]
Taheri, B.A.; Knight, R.T.; Smith, R.L. A Dry Electrode for EEG Recording. Electroencephalogr. Clin. Neurophysiol?1994, 90, 376–383.
[8]
Griss, P.; Enoksson, P.; Stemme, G. Micromachined Barbed Spikes for Mechanical Chip Attachment. Sens. Actuat. A: Phys?2002, 95, 94–99.
[9]
Harrison, R.R.; Watkins, P.T.; Kier, R.J.; Lovejoy, R.O.; Black, D.J.; Greger, B.; Solzbacher, F. A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE J. Solid-State Circ?2007, 42, 123–133.
[10]
Denison, T.; Consoer, K.; Kelly, A.; Hachenburg, A.; Santa, W. A 2.2 W 94 nV/Hz, Chopper-Stabilized Instrumentation Amplifier for EEG Detection in Chronic Implants. Proceedings of IEEE International Solid-State Circuits Conference (ISSCC 2007), San Francisco, CA, USA, February 11–15, 2007; pp. 162–594.
[11]
Aziz, J.N.Y.; Abdelhalim, K.; Shulyzki, R.; Genov, R.; Bardakjian, B.L.; Derchansky, M.; Serletis, D.; Carlen, P.L. 256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes. IEEE J. Solid-State Circ?2009, 44, 995–1005.
[12]
Teplan, M. Fundamental of EEG Measurement. Meas. Sci. Rev?2002, 2, 1–11.
[13]
Miller, H.A.; Harrison, D.C. Biomedical Electrode Technology; Academic Press: New York, NY, USA, 1974.
[14]
Griss, P.; Enoksson, P.; Tolvanen-Laakso, H.K.; Merilainen, P.; Ollmar, S.; Stemme, G. Micromachined Electrodes for Biopotential Measurements. J. Microelectromech. Syst?2001, 10, 10–16.
Pallas-Areny, R.; Webster, J.G. AC Instrumentation Amplifier for Bioimpedance Measurements. IEEE Trans. Biomed. Eng?1993, 40, 830–833.
[17]
Spinelli, E.M.; Pallas-Areny, R.; Mayosky, M.A. AC-Coupled Front-End for Biopotential Measurements. IEEE Trans. Biomed. Eng?2003, 50, 391–395.
[18]
Spinelli, E.M.; Martinez, N.; Mayosky, M.A.; Pallas-Areny, R. A Novel Fully Differential Biopotential Amplifier with DC Suppression. IEEE Trans. Biomed. Eng?2004, 51, 1444–1448.
[19]
Steyaert, M.S.J.; Sansen, W.M.C. A Micropower Low-Noise Monolithic Instrumentation Amplifier for Medical Purposes. IEEE J. Solid-State Circ?1987, 22, 1163–1168.
[20]
Khan, A.A.; Al-Turaigi, M.A.; Ei-Ela, M.A. An Improved Current-Mode Instrumentation Amplifier with Bandwidth Independent of Gain. IEEE Trans. Instrum. Meas?1995, 44, 887–891.
[21]
Brokaw, A.P.; Timko, M.P. An Improved Monolithic Instrumentation Amplifier. IEEE J. Solid-State Circ?1975, 10, 417–423.
[22]
Martins, R.; Selberherr, S.; Vaz, F.A. A CMOS IC for Portable EEG Acquisition Systems. IEEE Trans. Instrum. Meas?1998, 47, 1191–1196.
[23]
Franco, S. Design With Operational Amplifiers and Analog Integrated Circuits, 3rd ed ed.; McGraw-Hill: New York, NY, USA, 2001; pp. 79–85.
[24]
Yazicioglu, R.F.; Merken, P.; Puers, R.; Van Hoof, C. A 60 uW 60 nV/root Hz Readout Front-End for Portable Biopotential Acquisition Systems. IEEE J. Solid-State Circ?2007, 42, 1100–1110.
[25]
Harrison, R.R.; Charles, C. A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications. IEEE J. Solid-State Circ?2003, 38, 958–965.
[26]
Nicollini, G.; Guardiani, C. A 3.3-V 800-nV Noise, Gain-Programmable CMOS Microphone Preamplifier Design Using Yield Modeling Technique. IEEE J. Solid-State Circ?1993, 28, 915–921.
[27]
Ng, K.A.; Chan, P.K. A CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications. IEEE Trans. Circ. Syst. I: Reg. Pap?2005, 52, 2335–2347.
[28]
Sackinger, E.; Guggenbuhl, W. A Versatile Building Block: The CMOS Differential Difference Amplifier. IEEE J. Solid-State Circ?1987, 22, 287–294.
[29]
Uranga, A.; Navarro, X.; Barniol, N. Integrated CMOS Amplifier for ENG Signal Recording. IEEE Trans. Biomed. Eng?2004, 51, 2188–2194.
[30]
Enz, C.C.; Temes, G.C. Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization. Proc. IEEE?1996, 84, 1584–1614.
[31]
Enz, C.C.; Vittoz, E.A.; Krummenacher, F. A CMOS Chopper Amplifier. IEEE J. Solid-State Circ?1987, 22, 335–342.
[32]
Chang, C.W.; Chiou, J.C. Surface-Mounted Dry Electrode and Analog-Front-End Systems for Physiological Signal Measurements. Proceedings of Life Science Systems and Applications Workshop (LiSSA 2009), Bethesda, ML, USA, April 9–10, 2009; pp. 108–111.
[33]
Mortezapour, S.; Lee, E.K.F. A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process. IEEE J. Solid-State Circ?2000, 35, 642–646.
[34]
Culurciello, E.; Andreou, A.G. An 8-Bit 800 uw 1.23-MS/s Successive Approximation ADC in SOI CMOS. IEEE Trans. Circ. Syst. II: Express Briefs?2006, 53, 858–861.
[35]
Balasubramanian, K. Improving the Resolution of Selected ADCs. IEEE Trans. Consum. Electron?1991, 37, 81–85.
[36]
Huang, G.Y.; Liu, C.C.; Lin, Y.Z.; Chang, S.J. A 10-Bit 12-MS/s Successive Approximation ADC with 1.2-pF Input Capacitance. Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC’09), Taipei, Taiwan, November 16–18, 2009; pp. 157–160.
[37]
Culurciello, E.; Andreou, A. An 8-Bit, 1 mW Successive Approximation ADC in SOI CMOS. Proceedings of the 2003 International Symposium on Circuits and Systems (ISCAS'03), Bangkok, Thailand, May 25–28, 2003; 1, pp. I-301–I-304.
[38]
Sauerbrey, J.; Schmitt-Landsiedel, D.; Thewes, R. A 0.5-V 1-uW Successive Approximation ADC. IEEE J. Solid-State Circ?2003, 38, 1261–1265.
[39]
Scott, M.D.; Boser, B.E.; Pister, K.S.J. An Ultralow-Energy ADC for Smart Dust. IEEE J. Solid-State Circ?2003, 38, 1123–1129.
[40]
Long, Y.; Namjun, C.; Yoo, J.; Binhee, K.; Hoi-Jun, Y. A Two-Electrode 2.88nJ/Conversion Biopotential Acquisition System for Portable Healthcare Device. Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC’08), Fukuoka, Japan, November 3–5, 2008; pp. 329–332.
[41]
Hadidi, K.; Tso, V.S.; Temes, G.C. An 8-b 1.3-MHz Successive-Approximation A/D converter. IEEE J. Solid-State Circ?1990, 25, 880–885.
[42]
Mortezapour, S.; Lee, E.K.F. A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS process. IEEE J. Solid-State Circ?2000, 35, 642–646.
[43]
Chow, H.C.; Chen, B.W.; Chen, H.C.; Feng, W.S. A 1.8 V, 0.3 mW, 10-Bit SA-ADC with New Self-Timed Timing Control for Biomedical Applications. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2005), Kobe, Japan, May 23–26, 2005; 731, pp. 736–739.