全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

DOI: 10.3390/s100402869

Keywords: body fluids, semen, blood, saliva, forensic medicine, human, discriminant analysis, spectroscopy, spectrum analysis, Raman spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

References

[1]  Greenfield, A.; Sloan, M.M. Identification of biological fluids and stains. In Forensic Science: an Introduction to Scientific and Investigative Techniques; CRC Press: Boca Ratom, FL, USA, 2005; pp. 261–271.
[2]  Juusola, J.; Ballantyne, J. mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J. Forensic. Sci?2007, 52, 1252–1262. 17868268
[3]  Crime Scene Investigation: A Guide for Law Enforcement; U.S. Department of Justice Office of Justice Programs: Washington, DC, USA, 2000.
[4]  Soukos, N.S.; Crowley, K.; Bamberg, M.P.; Gillies, R.; Doukas, A.G.; Evans, R.; Kollias, N. A rapid method to detect dried saliva stains swabbed from human skin using fluorescence spectroscopy. Forensic. Sci. Int?2000, 114, 133–138, doi:10.1016/S0379-0738(00)00292-9. 11027866
[5]  Powers, L.S.; Lloyd, C.R. Method and apparatus for detecting and imaging the presence of biological materialsUS Patent 7186990. 2007.
[6]  Estes, C.; Duncan, A.; Wade, B.; Lloyd, C.; Ellis, W., Jr.; Powers, L. Reagentless detection of microorganisms by intrinsic fluorescence. Biosens. Bioelectron?2003, 18, 511–519, doi:10.1016/S0956-5663(03)00008-3. 12706557
[7]  Virkler, K.; Lednev, I.K. Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic. Sci. Int?2009, 193, 56–62, doi:10.1016/j.forsciint.2009.09.005. 19850425
[8]  Virkler, K.; Lednev, I.K. Forensic body fluid identification: The Raman spectroscopic signature of saliva. Analyst?2010, doi:10.1039/b919393f.
[9]  Virkler, K.; Lednev, I.K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal. Bioanal. Chem?2009, 396, 525–534. 19834691
[10]  Virkler, K.; Lednev, I.K. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic. Sci. Int?2008, 181, e1–5, doi:10.1016/j.forsciint.2008.08.004. 18848751
[11]  Virkler, K.; Lednev, I.K. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic. Sci. Int?2009, 188, 1–17, doi:10.1016/j.forsciint.2009.02.013. 19328638
[12]  De Wael, K.; Lepot, L.; Gason, F.; Gilbert, B. In search of blood--detection of minute particles using spectroscopic methods. Forensic. Sci. Int?2008, 180, 37–42, doi:10.1016/j.forsciint.2008.06.013. 18706777
[13]  Virkler, K.; Lednev, I.K. Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Anal. Chem?2009, 81, 7773–7777, doi:10.1021/ac901350a. 19670872
[14]  Gebel, E. Species in a snap: Raman analysis of blood. Anal. Chem?2009, 81, 7862, doi:10.1021/ac901827u.
[15]  Yu, N.T. Raman spectroscopy: a conformational probe in biochemistry. CRC Crit. Rev. Biochem?1977, 4, 229–280, doi:10.3109/10409237709102559. 319947
[16]  Carey, P.R. Resonance Raman spectroscopy in biochemistry and biology. Q. Rev. Biophys?1978, 11, 309–370, doi:10.1017/S0033583500002298. 379896
[17]  Peticolas, W.L. Application of Raman spectroscopy to biological macromolecules. Biochimie?1975, 57, 417–428, doi:10.1016/S0300-9084(75)80328-2. 238668
[18]  Shashilov, V.; Lednev, I.K. Deep-UV Raman spectroscopy directly probes a fibrillation nucleus. Laser Focus World?2007, 43, 87–90.
[19]  Shashilov, V.A.; Lednev, I.K. Two-dimensional correlation Raman spectroscopy for characterizing protein structure and dynamics. J. Raman Spectrosc?2009, 40, 1749–1758, doi:10.1002/jrs.2544.
[20]  Shashilov, V.; Xu, M.; Ermolenkov, V.V.; Fredriksen, L.; Lednev, I.K. Probing a fibrillation nucleus directly by deep ultraviolet Raman spectroscopy. J. Am. Chem. Soc?2007, 129, 6972–6973, doi:10.1021/ja070038c. 17500518
[21]  Xu, M.; Shashilov, V.; Lednev, I.K. Probing the cross-beta core structure of amyloid fibrils by hydrogen-deuterium exchange deep ultraviolet resonance Raman spectroscopy. J. Am. Chem. Soc?2007, 129, 11002–11003, doi:10.1021/ja073798w. 17705492
[22]  Xu, M.; Shashilov, V.A.; Ermolenkov, V.V.; Fredriksen, L.; Zagorevski, D.; Lednev, I.K. The first step of hen egg white lysozyme fibrillation, irreversible partial unfolding, is a two-state transition. Protein. Sci?2007, 16, 815–832, doi:10.1110/ps.062639307. 17400924
[23]  Shashilov, V.A.; Ermolenkov, V.V.; Lednev, I.K. Multiple bicyclic diamide-lutetium complexes in solution: chemometric analysis of deep-UV Raman spectroscopic data. Inorg. Chem?2006, 45, 3606–3612, doi:10.1021/ic0600331. 16634592
[24]  Sikirzhytski, V.; Topilina, N.I.; Higashiya, S.; Welch, J.T.; Lednev, I.K. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils. J. Am. Chem. Soc?2008, 130, 5852–5853, doi:10.1021/ja8006275. 18410104
[25]  Shashilov, V.A.; Lednev, I.K. 2D correlation deep UV resonance raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls. J. Am. Chem. Soc?2008, 130, 309–317, doi:10.1021/ja076225s. 18067295
[26]  Shashilov, V.A.; Xu, M.; Ermolenkov, V.V.; Lednev, I.K. Latent variable analysis of Raman spectra for structural characterization of proteins. J. Quant. Spectrosc. Radiat. Transfer?2006, 102, 46–61, doi:10.1016/j.jqsrt.2006.02.049.
[27]  Shashilov, V.A.; Lednev, I.K. Bayesian Extraction of Deep UV Resonance Raman Signature of Fibrillar Cross-β Sheet Core based on H-D Exchange Data; Knuth, K.H., Caticha, A., Giffin, A., Rodríguez, C.C., Center, J.L.J., Eds.; Saratoga Springs: New York, NY, USA, 2007; pp. 450–457.
[28]  De Gelder, J.; Gussem, K.D.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman. Spectrosc?2007, 38, 1133–1147, doi:10.1002/jrs.1734.
[29]  Johnson, C.R.; Ludwig, M.; Asher, S.A. Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan. J. Am. Chem. Soc?1986, 108, 905–912, doi:10.1021/ja00265a010.
[30]  Chikishev, A.Y.; Lucassen, G.W.; Koroteev, N.I.; Otto, C.; Greve, J. Polarization sensitive coherent anti-Stokes Raman scattering spectroscopy of the amide I band of proteins in solutions. Biophys. J?1992, 63, 976–985, doi:10.1016/S0006-3495(92)81691-0. 1330043
[31]  Berjot, M.; Marx, J.; Alix, A.J.P. Determination of the secondary structure of proteins from the Raman amide I band: The reference intensity profiles method. J. Raman. Spectrosc?2005, 18, 289–300.
[32]  Mikhonin, A.V.; Bykov, S.V.; Myshakina, N.S.; Asher, S. A. Peptide secondary structure folding reaction coordinate: correlation between uv raman amide III frequency, Psi Ramachandran angle, and hydrogen bonding. J. Phys. Chem. B?2006, 110, 1928–1943, doi:10.1021/jp054593h. 16471764
[33]  Carter, E.A.; Edwards, H.G.M. Biological applications of Raman spectroscopy. In Infrared and Raman Spectroscopy of Biological Materials; Hans-Ulrich, G., Yan, B., Eds.; Marcel Dekker, Inc: New York, NY, USA, 2001; Volume 24, pp. 421–475.
[34]  Liang, J.; Cheng, Y.; Han, H. Study on the interaction of bovine serum albumin and CdTe quantum dots with spectroscopic techniques. J. Mol. Struct?2008, 892, 116–120, doi:10.1016/j.molstruc.2008.05.005.
[35]  Ivanov, A.I.; Zhbankov, R.G.; Korolenko, E.A.; Korolik, E.V.; Meleshchenko, L.A.; Marchewka, M.; Ratajczak, H. Infrared, Raman spectroscopic studies of the structure of human serum albumin under various ligand loads. J. Appl. Spectrosc?1994, 60, 399–405.
[36]  Edsall, J.T. Raman spectra of amino acids and related compounds. VI. Sarcosine, ethanolamine, choline, betaine, and betaine derivatives. J. Am. Chem. Soc?1943, 65, 1767–1770, doi:10.1021/ja01249a029.
[37]  Koyama, Y.; Toda, S.; Kyogoku, Y. Raman spectra and conformation of the glycerophosphorylcholine headgroup. Chem. Phys. Lipids?1977, 19, 74–92, doi:10.1016/0009-3084(77)90082-2. 872286
[38]  Spiker, R.C., Jr.; Levin, I.W. Raman spectra and vibrational assignments for dipalmitoyl phosphatidylcholine and structurally related molecules. Biochim. Biophys. Acta?1975, 388, 361–373, doi:10.1016/0005-2760(75)90095-8. 1137716
[39]  Bertoluzza, A.; Fagnano, C.; Finelli, P.; Morelli, M.A.; Simoni, R.; Tosi, R. Raman and infrared spectra of spermidine and spermine and their hydrochlorides and phosphates as a basis for the study of the interactions between polyamines and nucleic acids. J. Raman. Spectrosc?1983, 14, 385–394.
[40]  Eapen, A.; Joe, I.H.; Aruldhas, G. Vibrational and SERS spectra of spermine phosphate hexahydrate. Spectrosc. Lett?1997, 30, 751–770, doi:10.1080/00387019708006696.
[41]  Sato, H.; Chiba, H.; Tashiro, H.; Ozaki, Y. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation. J. Biomed. Opt?2001, 6, 366–370, doi:10.1117/1.1380668. 11516329
[42]  Venkatesh, B.; Ramasamy, S.; Mylrajan, M.; Asokan, R.; Manoharan, P.T.; Rifkind, J.M. Fourier transform Raman approach to structural correlation in hemoglobin derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc?1999, 55A, 1691–1697. 10439514
[43]  Asher, S.A.; Vickery, L.E.; Schuster, T.M.; Sauer, K. Resonance Raman spectra of methemoglobin derivatives. Selective enhancement of axial ligand vibrations and lack of an effect of inositol hexaphosphate. Biochemistry?1977, 16, 5849–5856, doi:10.1021/bi00645a032. 588559
[44]  Blood. In Encyclopaedia Britannica, 14th ed; Hutchins, R.M., Ed.; Encyclopaedia Britannica, Inc: Chicago, IL, USA, 1970; Volume 3, p. 796.
[45]  Adar, F.; Gouterman, M; Aronowitz, S. Fluorescence, resonance Raman, and radiationless decay in several hemoproteins. J. Phys. Chem?1976, 80, 2184–2191, doi:10.1021/j100561a010.
[46]  Marx, J.; Hudry-Clergeon, G.; Capet-Antonini, F.; Bernard, L. Laser Raman spectroscopy study of bovine fibrinogen and fibrin. Biochim. Biophys. Acta?1979, 578, 107–115, doi:10.1016/0005-2795(79)90118-1. 454660
[47]  Vanni, S. Raman chemical imaging provides rapid, non-invasive and reagentless biothreat detection. Proceedings of 19th Annual NDIA Security Symposium & Exhibition; ChemImage Corporation: Pittsburgh, PA, USA, 2003.
[48]  Kalasinsky, K.S.; Hadfield, T.; Shea, A.A.; Kalasinsky, V.F.; Nelson, M.P.; Neiss, J.; Drauch, A.J.; Vanni, G.S.; Treado, P.J. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation. Anal. Chem?2007, 79, 2658–2673, doi:10.1021/ac0700575. 17338507
[49]  FT-IR Raman spectrum of propyl acetate. Sigma-Aldrich Co: St. Louis, MO, USA, 2009.
[50]  FT-IR Raman spectrum of dodecyl acetate. Sigma-Aldrich Co: St. Louis, MO, USA, 2009.
[51]  FT-IR Raman spectrum of amyl acetate. Sigma-Aldrich Co: St. Louis, MO, USA, 2009.
[52]  Barrett, T.W. Laser Raman spectra of mono-, oligo- and polysaccharides in solution. Spectrochim. Acta A Mol. Spectrosc?1981, 37, 233–239, doi:10.1016/0584-8539(81)80168-7.
[53]  Habuchi, O. Diversity and functions of glycosaminoglycan sulfotransferases. Biochim. Biophys. Acta?2000, 1474, 115–127, doi:10.1016/S0304-4165(00)00016-7. 10742590
[54]  Walsh, M.C.; Brennan, L.; Malthouse, J.P.; Roche, H.M.; Gibney, M.J. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am. J. Clin. Nutr?2006, 84, 531–539. 16960166
[55]  Effros, R.M.; Casaburi, R.; Su, J.; Dunning, M.; Torday, J.; Biller, J.; Shaker, R. The effects of volatile salivary acids and bases on exhaled breath condensate pH. Am. J. Respir. Crit. Care Med?2006, 173, 386–392, doi:10.1164/rccm.200507-1059OC. 16284109
[56]  Mariey, L.; Signolle, J.P.; Amiel, C.; Travert, J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib. Spectrosc?2001, 26, 151–159, doi:10.1016/S0924-2031(01)00113-8.
[57]  Coomans, D.; Smyth, C.; Lee, I.; Hancock, T.; Yang, J. Unsupervised data mining: introduction. In Comprehensive chemometrics: chemical and biochemical data analysis; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier B.V.: Amsterdam, the Netherlands, 2009; Volume 2, pp. 559–576.
[58]  Orav, E.J.; Louis, T.A.; Palmer, R.H.; Wright, E.A. Variance components and their implications for statistical information in medical data. Stat. Med?1991, 10, 599–616, doi:10.1002/sim.4780100411. 2057658
[59]  Beljebbar, A.; Bouche, O.; Diebold, M.D.; Guillou, P.J.; Palot, J.P.; Eudes, D.; Manfait, M. Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues. Crit. Rev. Oncol. Hematol?2009, 72, 255–264, doi:10.1016/j.critrevonc.2009.09.004. 19819161
[60]  Miller, D.J.; Wang, Y.; Kesidis, G. Emergent unsupervised clustering paradigms with potential application to bioinformatics. Front. Biosci?2008, 13, 677–690, doi:10.2741/2711. 17981579
[61]  Ester, M.; Kriegel, H.-P.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise; AAAI Press: Menlo Park, CA, USA, 1996; pp. 226–231.
[62]  Krafft, C.; Steiner, G.; Beleites, C.; Salzer, R. Disease recognition by infrared and Raman spectroscopy. J. Biophotonics?2009, 2, 13–28, doi:10.1002/jbio.200810024. 19343682
[63]  Ivosev, G.; Burton, L.; Bonner, R. Dimensionality reduction and visualization in principal component analysis. Anal. Chem?2008, 80, 4933–4944, doi:10.1021/ac800110w. 18537272
[64]  Baxter, M.J. A review of supervised and unsupervised pattern recognition in archaeometry. Archaeometry?2006, 48, 671–694, doi:10.1111/j.1475-4754.2006.00280.x.
[65]  Larranaga, P.; Calvo, B.; Santana, R.; Bielza, C.; Galdiano, J.; Inza, I.; Lozano, J.; Armananzas, R.; Santafe, G.; Perez, A.; Robles, V. Machine learning in bioinformatics. Briefings Bioinformatics?2006, 7, 86–112, doi:10.1093/bib/bbk007.
[66]  Lavine, B.K.; Rayens, W.S. Statistical discriminant analysis. In Comprehensive chemometrics: chemical and biochemical data analysis; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier B.V.: Amsterdam, Netherlands, 2009; Volume 3, pp. 517–540.
[67]  Coomans, D.; Massart, D. L.; Kaufman, L. Optimization by statistical linear discriminant analysis in analytical chemistry. Anal. Chim. Acta?1979, 112, 97–122, doi:10.1016/S0003-2670(01)83513-3.
[68]  Huang, J.; Yuen, P.C.; Chen, W.-S.; Lai, J.H. Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations. IEEE Trans. Syst. Man. Cybern. Part B Cybern?2007, 37, 847–862, doi:10.1109/TSMCB.2007.895328.
[69]  Yu, H.; Yang, J. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern. Recognit?2001, 34, 2067–2070, doi:10.1016/S0031-3203(00)00162-X.
[70]  Loog, M.; Duin, R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans. Pattern. Anal. Mach. Intell?2004, 26, 732–739, doi:10.1109/TPAMI.2004.13. 18579934
[71]  Zhu, M.; Martinez, A.M. Subclass discriminant analysis. IEEE Trans. Pattern. Anal. Mach. Intell?2006, 28, 1274–1286, doi:10.1109/TPAMI.2006.172. 16886863
[72]  Dunn, W.J.I.; Wold, S. SIMCA pattern recognition and classification. Meth. Princip. Med. Chem?1995, 2, 179–193.
[73]  Goerlitz, L.; Menze, B.H.; Kelm, B.M.; Hamprecht, F.A. Processing spectral data. Surf. Interface Anal?2009, 41, 636–644, doi:10.1002/sia.3066.
[74]  Everitt, B.S. Analysis of longitudinal data. Beyond MANOVA. Br. J. Psychiatry?1998, 172, 7–10, doi:10.1192/bjp.172.1.7. 9534824
[75]  Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom?2003, 17, 166–173, doi:10.1002/cem.785.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133