全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

DOI: 10.3390/s100302169

Keywords: penning trap, magnetic bottle, spectroscopy, magnetic moment

Full-Text   Cite this paper   Add to My Lib

Abstract:

The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state lifetimes. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain.

References

[1]  Major, F.G.; Gheorghe, V.N.; Werth, G. Charged Particle Traps; Springer: Heidelberg, Germany, 2004.
[2]  Demtr?der, W. Laser spectroscopy; Springer: Berlin, Germany, 1996.
[3]  Oskay, W.H.; Diddams, S.A.; Donley, E.A.; Fortier, T.M.; Heavner, T.P.; Hollberg, L.; Itano, W.M.; Jefferts, S.R.; Delaney, M.J.; Kim, K.; Levi, F.; Parker, T.E.; Bergquist, J.C. Single-Atom Optical Clock with High Accuracy. Phys. Rev. Lett?2006, 97, 020801.
[4]  Schneider, T.; Peik, E.; Tamm, C. Sub-Hertz Optical Frequency Comparisons between Two Trapped 171Yb+ Ions. Phys. Rev. Lett?2005, 94, 230801.
[5]  Gill, P.; Barwood, G.P.; Huang, G.; Klein, H.A.; Blythe, P.J.; Hosaka, K.; Thompson, R.C.; Webster, S.A.; Lea, S.N.; Margolis, H.S. Trapped Ion Optical Frequency Standards. Physica Scripta?2004, T112, 63–67.
[6]  Dehmelt, H.G. New Continuous Stern-Gerlach Effect and a Hint of “the” Elementary Particle. Z. Phys. D?1988, 10, 127–134.
[7]  Odom, B.; Hanneke, D.; D’Urso, B.; Gabrielse, G. New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron. Phys. Rev. Lett?2006, 97, 030801.
[8]  Gabrielse, G.; Hanneke, D.; Kinoshita, T.; Nio, M.; Odom, B. New Determination of the Fine Structure Constant from the Electron g Value and QED. Phys. Rev. Lett?2006, 97, 030802.
[9]  H?ffner, H.; Beier, T.; Hermanspahn, N.; Kluge, H.J.; Quint, W.; Stahl, S.; Verdú, J.; Werth, G. High-Accuracy Measurement of the Magnetic Moment Anomaly of the Electron Bound in Hydrogenlike Carbon. Phys. Rev. Lett?2000, 85, 5308–5311.
[10]  Verdú, J.; Djeki?, S.; Stahl, S.; Valenzuela, T.; Vogel, M.; Werth, G.; Beier, T.; Kluge, H.J.; Quint, W. Electronic g-Factor of Hydrogenlike Oxygen 16O7+. Phys. Rev. Lett?2004, 92, 093002.
[11]  Young, B.C.; Cruz, F.C.; Itano, W.M.; Bergquist, J.C. Visible Lasers with Subhertz Linewidths. Phys. Rev. Lett?1999, 82, 3799–3802.
[12]  Webster, S.A.; Oxborrow, M.; Gill, P. Sub-Hertz Linewidth Nd:YAG Laser. Optics Letters?2004, 29, 1497–1499.
[13]  van Dyck, R.S.; Schwinberg, P.B.; Dehmelt, H.G. New High-Precision Comparison of Electron and Positron g Factors. Phys. Rev. Lett?1987, 59, 26–29.
[14]  Dehmelt, H.G.; Ekstrom, P. Proposed g-2 Experiment on Stored Single Electron or Positron. Bull. Am. Phys. Soc?1973, 18, 727–731.
[15]  H?ffner, H.; Beier, T.; Djekic, S.; Hermanspahn, N.; Kluge, H.J.; Quint, W.; Stahl, S.; Verdu, J.; Valenzuela, T.; Werth, G. Double Penning Trap Technique for Precise g Factor Determinations in Highly Charged Ions. Eur. Phys. J. D?2003, 22, 163–182.
[16]  Gabrielse, G.; Haarsma, L.; Rolston, S.L. Open-endcap Penning Traps for High Precision Experiments. Int. J. Mass Spectr. Ion Proc?1989, 88, 319–332.
[17]  Brown, L.S.; Gabrielse, G. Geonium Theory: Physics of a Single Electron or Ion in a Penning Trap. Rev. Mod. Phys?1986, 58, 233–311.
[18]  Gabrielse, G. Why Is Sideband Mass Spectrometry Possible with Ions in a Penning Trap? Phys. Rev. Lett?2009, 102, 172501.
[19]  Gabrielse, G. The True Cyclotron Frequency for Particles and Ions in a Penning Trap. Int. J. Mass Spectrom?2009, 279, 107–112.
[20]  Djekic, S.; Alonso, J.; Kluge, H.J.; Quint, W.; Stahl, S.; Valenzuela, T.; Verdu, J.; Vogel, M.; Werth, G. Temperature Measurement of a Single Ion in a Penning Trap. Eur. Phys. J. D?2004, 31, 451–457.
[21]  Wineland, D.J.; Dehmelt, H.G. Principles of the Stored Ion Calorimeter. J. Appl. Phys?1975, 46, 919–930.
[22]  Mendlowitz, H.; Case, K.M. Double Scattering of Electrons with Magnetic Interaction. Phys. Rev?1955, 97, 33–38.
[23]  Bargmann, V.; Michel, L.; Telegdi, V.L. Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field. Phys. Rev. Lett?1958, 2, 435–438.
[24]  Combley, F.; Ferley, F.J.M.; Field, J.H.; Picasso, E. G-2 Experiments as a Test of Special Relativity. Phys. Rev. Lett?1979, 42, 1383–1386.
[25]  Rainville, F.; Thompson, J.K.; Pritchard, D.E. An Ion Balance for Ultra-High-Precision Atomic Mass Measurements. Science?2004, 303, 334–338.
[26]  Stahl, S.; Alonso, J.; Djekic, S.; Kluge, H.J.; Quint, W.; Verdu, J.; Vogel, M.; Werth, G. Phase-sensitive Measurement of Trapped Particle Motions. J. Phys. B?2005, 38, 297–304.
[27]  Vogel, M.; Quint, W. Laser Spectroscopy by a Radiofrequency Measurement on a Single Ion in a Penning Trap. New J. Phys?2009, 11, 013024.
[28]  Vogel, M. The Anomalous Magnetic Moment of the Electron. Contemporary Physics?2009, 50, 437–452.
[29]  Beier, T.; H?ffner, H.; Hermanspahn, N.; Karshenboim, S.G.; Kluge, H.J.; Quint, W.; Stahl, S.; Verdu, J.; Werth, G. New Determination of the Electrons Mass. Phys. Rev. Lett?2002, 88, 011603.
[30]  Blaum, K.; Kracke, H.; Kreim, S.; Mooser, A.; Mrozik, C.; Quint, W.; Rodegheri, C.C.; Schabinger, B.; Sturm, S.; Ulmer, S.; Wagner, A.; Walz, J.; Werth, G. G-Factor Experiments on Simple Systems in Penning Traps. J. Phys. B?2009, 42, 154021.
[31]  Vogel, M.; Alonso, J.; Blaum, K.; Quint, W.; Schabinger, B.; Sturm, S.; Verdu, J.; Wagner, A.; Werth, G. The Anomalous Magnetic Moment of the Electron in Hydrogenlike Ions. Eur. Phys. J. Special Topics?2008, 163, 113–126.
[32]  Quint, W.; Alonso, J.; Djekic, S.; Kluge, H.-J.; Stahl, S.; Valenzuela, T.; Verdu, J.; Vogel, M.; Werth, G. Continuous Stern-Gerlach Effect and the Magnetic Moment of the Antiproton. Nucl. Inst. Meth. B?2004, 214, 207–210.
[33]  Rodegheri, C.C.; Blaum, K.; Kracke, H.; Kreim, S.; Mooser, A.; Mrozik, C.; Quint, W.; Ulmer, S.; Walz, J. Developments for the Direct Determination of the g-Factor of a Single Proton in a Penning Trap. Hyp. Int?2009, 194, 93–98.
[34]  Blaum, K. High-accuracy Mass Spectrometry with Stored Ions. Phys. Rep?2006, 425, 1–78.
[35]  Peik, E.; Tamm, C. Nuclear Laser Spectroscopy of the 3.5 eV Transition in Th-229. Europhys. Lett?2003, 61, 181–186.
[36]  Beyer, H.F.; Kluge, H.J.; Shevelko, V.P. X-Ray Radiation of Highly-Charged Ions; Spinger: Heidelberg, Germany, 1997.
[37]  Knight, R.D.; Prior, M.H. Radiative Lifetime of Metastable 23S1Li+. Phys. Rev. A?1980, 21, 179–187.
[38]  Chu, S.Y.F.; Ekstr?m, L.P.; Firestone, R.B. WWW Table of Radioactive Isotopes, database version 28 February 1999. Available online: http://nucleardata.nuclear.lu.se/nucleardata/toi/ (accessed on 11 May 2009).
[39]  Block, M.; Bachelet, C.; Bollen, G.; Facina, M.; Folden, C.M., III; Guénaut, C.; Kwiatkowski, A.A.; Morrissey, D.J.; Pang, G.K.; Prinke, A.; Ringle, R.; Savory, J.; Schury, P.; Schwarz, S. Discovery of a Nuclear Isomer in 65Fe with Penning Trap Mass Spectrometry. Phys. Rev. Lett?2008, 100, 132501.
[40]  Blaum, K.; Beck, D; Bollen, G.; Delahaye, P.; Guénaut, C.; Herfurth, F.; Kellerbauer, A.; Kluge, H.J.; Lunney, D.; Schwarz, S.; Schweikhard, L.; Yazidjian, C. Population Inversion of Nuclear States by a Penning Trap Mass Spectrometer. Europhys. Lett?2004, 67, 586–592.
[41]  Eronen, T.; Elomaa, V.V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kessler, T.; Moore, I.D.; Rahaman, S.; Rissanen, J.; Weber, C.; ?yst?, J. Mass and QEC Value of 26Si. Phys. Rev. C?2009, 79, 032802.
[42]  Nakai, Y.; Shirai, T.; Tabata, T.; Ito, R. A Semiempirical Formula for Single-Electron-Capture Cross Sections of Multiply Charged Ions Colliding with H, H2 and He. Phys. Scr?1989, T28, 77–80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133