Piezoelectrics have widespread use in today’s sensor and actuator technologies. However, most commercially available piezoelectric materials, e.g., Pb [ZrxTi1-x] O3 (PZT),are comprised of more than 60 weight percent lead (Pb). Dueto its harmful effects, there is a strong impetus to identify new lead-free replacement materials with comparable properties to those of PZT. This review highlights recent developments in several lead-free piezoelectric materials including BaTiO3, Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, Na0.5K0.5NbO3, and their solid solutions. The factors that contribute to strong piezoelectric behavior are described and a summary of the properties for the various systems is provided.
References
[1]
Setter, N. ABC of piezoelectricity and piezoelectric materials. In Piezoelectric Materials in Devices; Setter, N., Ed.; Nava Setter: Lausanne, Switzerland, 2002; p. 518.
[2]
Cross, E. Materials science-Lead-free at last. Nature?2004, 432, 24–25.
Haertling, G.H. Ferroelectric ceramics: history and technology. J. Amer. Ceram. Soc?1999, 82, 797–818.
[5]
Viehland, D. Effect of uniaxial stress upon the electromechanical properties of various piezoelectric ceramics and single crystals. J. Amer. Ceram. Soc?2006, 89, 775–785.
[6]
Ahart, M.; Somayazulu, M.; Cohen, R.E.; Ganesh, P.; Dera, P.; Mao, H.K.; Hemley, R.J.; Ren, Y.; Liermann, P.; Wu, Z.G. Origin of morphotropic phase boundaries in ferroelectrics. Nature?2008, 451, 545–U542.
[7]
Jaffe, B.; Roth, R.S.; Marzullo, S. Piezoelectric properties of Lead Zirconate-Lead Titanate solid-solution ceramics. J. Appl. Phys?1954, 25, 809–810.
[8]
Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics; R.A.N. Publishers: Marietta, OH, USA, 1971; p. 317.
[9]
Noheda, B.; Cox, D.E.; Shirane, G.; Gonzalo, J.A.; Cross, L.E.; Park, S.E. A monoclinic ferroelectric phase in the Pb (Zr1?xTix) O3 solid solution. Appl. Phys. Lett?1999, 74, 2059–2061.
[10]
Noheda, B.; Cox, D.E. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transit?2006, 79, 5–20.
[11]
Davis, M. Picturing the elephant: giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals. J. Electroceram?2007, 19, 23–45.
[12]
von Hippel, A. Ferroelectricity, Domain structure, and phase transitions of barium titanate. Reviews of Modern Physics?1950, 22, 221–237.
[13]
Rase, D.E.; Roy, R. Phase equilibria in the system Bao-Tio2. J. Amer. Ceram. Soc?1955, 38, 102–113.
[14]
Berlincourt, D.; Jaffe, H. Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev?1958, 111, 143–148.
[15]
Merz, W.J. The electric and optical behavior of Batio3 single-domain crystals. Phys. Rev?1949, 76, 1221–1225.
[16]
Wada, S.; Suzuki, S.; Noma, T.; Suzuki, T.; Osada, M.; Kakihana, M.; Park, S.E.; Cross, L.E.; Shrout, T.R. Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn. J. Appl. Phys. Pt. 1?1999, 38, 5505–5511.
[17]
Capurso, J.S.; Schulze, W.A. Piezoresistivity in PTCR barium titanate ceramics: I, experimental findings. J. Amer. Ceram. Soc?1998, 81, 337–346.
Ren, X.B. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater?2004, 3, 91–94.
[20]
Rogan, R.C.; Tamura, N.; Swift, G.A.; Ustundag, E. Direct measurement of triaxial strain fields around ferroelectric domains using X-ray microdiffraction. Nat. Mater?2003, 2, 379–381.
[21]
Zhang, L.X.; Erdem, E.; Ren, X.B.; Eichel, R.A. Reorientation of (MnTi″-VO??) x defect dipoles in acceptor-modified BaTiO3 single crystals: an electron paramagnetic resonance study. Appl. Phys. Lett?2008, 93, 2002901-1–202901-3.
[22]
Smolenskii, G.A.; Isupov, V.A.; Agranovskaya, A.I.; Krainik, N.N. New Ferroelectrics of Complex Composition. IV. Sov. Phys.-Solid State?1961, 2, 2651–2654.
[23]
Suchanicz, J.; Ptak, W.S. On the phase-transition in Na0.5Bi0.5TiO3. Ferroelectrics Lett. Sect?1990, 12, 71–78.
[24]
Suchanicz, J.; Jezowski, A.; Poprawski, R. Low-temperature thermal and dielectric properties of Na0.5Bi0.5TiO3. Phys. Status Solidi A-Appl. Res?1998, 169, 209–215.
[25]
Tu, C.S.; Siny, I.G.; Schmidt, V.H. Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3. Phys. Rev. B?1994, 49, 11550–11559.
[26]
Suchanicz, J.; Kwapulinski, J. X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3. Ferroelectrics?1995, 165, 249–253.
[27]
Isupov, V.A.; Kruzina, T.V. Some physical-properties of Na0.5Bi0.5TiO3 ferroelectric. Izv. Akad. Nauk Sssr Fiz?1983, 47, 616–618.
[28]
Jones, G.O.; Thomas, P.A. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. B-Struct. Sci?2002, 58, 168–178.
[29]
Hiruma, Y.; Nagata, H.; Takenaka, T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys?2009, 105, 084112.
[30]
Aparna, M.; Rachavender, M.; Prasad, G.; Kumar, G.S. Electromechanical characterization of lanthanum-doped sodium bismuth titanate ceramics. Mod. Phys. Lett. B?2006, 20, 475–480.
[31]
Sakata, K.; Masuda, Y. Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5) TiO3-SrTiO3 solid-solution ceramics. Ferroelectrics?1974, 7, 347–349.
[32]
Kay, H.F.; Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Phil. Mag?1949, 40, 1019–1040.
[33]
Wieder, H.H. Electrical behavior of barium titanate single crystals at low temperatures. Phys. Rev?1955, 99, 1161–1165.
[34]
Xiao, D.Q.; Lin, D.M.; Zhu, J.G.; Yu, P. Studies on new systems of BNT-based lead-free piezoelectric ceramics. J. Electroceram?2008, 21, 34–38.
[35]
Ge, W.W.; Liu, H.; Zhao, X.Y.; Zhong, W.Z.; Pan, X.M.; He, T.H.; Lin, D.; Xu, H.Q.; Jiang, X.P.; Luo, H.S. Growth, optical and electrical properties of pure and Mn-doped Na0.5Bi0.5TiO3 lead-free piezoelectric crystals. J. Alloys Compounds?2008, 462, 256–261.
[36]
Yi, J.Y.; Lee, J.K.; Hong, K.S. The role of cation vacancies on microstructure and piezoelectricity of lanthanum-substituted (Na1/2Bi1/2) TiO3 ceramics. Jpn. J. Appl. Phys. Pt. 1?2004, 43, 6188–6192.
[37]
Herabut, A.; Safari, A. Processing and electromechanical properties of (Bi0.5Na0.5) ((1-1.5x)) LaxTiO3 ceramics. J. Amer. Ceram. Society?1997, 80, 2954–2958.
[38]
Lin, D.M.; Xiao, D.Q.; Zhu, J.G.; Yu, P. Piezoelectric and ferroelectric properties of [Bi0.5(Na1?x?yKxLiy)0.5] TiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett?2006, 88, 062901.
[39]
Hiruma, Y.; Aoyagi, R.; Nagata, H.; Takenaka, T. Ferroelectric and piezoelectric properties of (Bi1/2K1/2) TiO3 ceramics. Jpn. J. Appl. Phys. Pt. 1?2005, 44, 5040–5044.
[40]
Hiruma, Y.; Nagata, H.; Takenaka, T. Grain-size effect on electrical properties of (Bi1/2K1/2) TiO3 ceramics. Jpn. J. Appl. Phys. Pt. 1?2007, 46, 1081–1084.
[41]
Ahtee, M.; Glazer, A.M. Lattice-parameters and tilted octahedra in sodium-potassium niobate solid-solutions. Acta Crystallogr. A?1976, 32, 434–446.
[42]
Maeder, M.D.; Damjanovic, D.; Setter, N. Lead free piezoelectric materials. J. Electroceram?2004, 13, 385–392.
[43]
Li, J.F.; Wang, K.; Zhang, B.P.; Zhang, L.M. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Amer. Ceram. Soc?2006, 89, 706–709.
[44]
Hollenstein, E.; Davis, M.; Damjanovic, D.; Setter, N. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5) NbO3 ceramics. Appl. Phys. Lett?2005, 87, 182905.
[45]
Guo, Y.P.; Kakimoto, K.; Ohsato, H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5) NbO3-LiNbO3 ceramics. Appl. Phys. Lett?2004, 85, 4121–4123.
[46]
Zang, G.Z.; Wang, J.F.; Chen, H C.; Su, W.B.; Wang, C.M.; Qi, P.; Ming, B.Q.; Du, J.; Zheng, L.M. Perovskite (Na0.5K0.5)1?x(LiSb)xNb1?xO3 lead-free piezoceramics. Appl. Phys. Lett?2006, 88, 212908.
Chu, Y.H.; Martin, L.W.; Holcomb, M.B.; Ramesh, R. Controlling magnetism with multiferroics. Mater. Today?2007, 10, 16–23.
[52]
Fujino, S.; Murakami, M.; Anbusathaiah, V.; Lim, S.H.; Nagarajan, V.; Fennie, C.J.; Wuttig, M.; Salamanca-Riba, L.; Takeuchi, I. Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett?2008, 92, 202904.
[53]
Lebeugle, D.; Colson, D.; Forget, A.; Viret, M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett?2007, 91, 022907.
[54]
Sasaki, A.; Chiba, T.; Mamiya, Y.; Otsuki, E. Dielectric and piezoelectric properties of (Bi0.5Na0.5) TiO3-(Bi0.5K0.5) TiO3 systems. Jpn. J. Appl. Phys. Pt. 1?1999, 38, 5564–5567.
[55]
Zhang, Y.R.; Li, J.F.; Zhang, B.P. Enhancing electrical properties in NBT-KBT lead-free piezoelectric ceramics by optimizing sintering temperature. J. Amer. Ceram. Soc?2008, 91, 2716–2719.
[56]
Kounga, A.B.; Zhang, S.T.; Jo, W.; Granzow, T.; Rodel, J. Morphotropic phase boundary in (1?x) Bi0.5Na0.5TiO3-xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett?2008, 92, 222902.
[57]
Zuo, R.Z.; Fang, X.S.; Ye, C. Phase structures and electrical properties of new lead-free (Na0.5K0.5) NbO3-(Bi0.5Na0.5) TiO3 ceramics. Appl. Phys. Lett?2007, 90, 092904.
[58]
Takenaka, T.; Maruyama, K.; Sakata, K. (Bi1/2Na1/2) TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. Pt. 1?1991, 30, 2236–2239.
[59]
Hiruma, Y.; Yoshi, K.; Nagata, H.; Takenaka, T. Investigation of phase ransition temperatures on (Bi1/2Na1/2) TiO3-(Bi1/2K1/2) TiO3 and (Bi1/2Na1/2) TiO3-BaTiO3 lead-free piezoelectric ceramics by electrical measurements. Ferroelectrics?2007, 246, 114–119.
[60]
Daniels, J.E.; Jo, W.; R?del, J.; Jones, J.L. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93% Bi0.5Na0.5TiO3–7% BaTiO3 piezoelectric ceramic. Appl. Phys. Lett?2009, 95, 032904.
[61]
Nagata, H.; Koizumi, N.; Takenaka, T. Lead-free piezoelectric ceramics of (Bi1/2Na1/2) TiO3-BiFeO3 system. Key Eng. Mat?1999, 169–170, 37–40.
[62]
Nemoto, M.; Hiruma, Y.; Nagata, H.; Takenaka, T. Fabrication and piezoelectric properties of grain-oriented (Bi1/2K1/2) TiO3-BaTiO3 ceramics. Jpn J. Appl. Phys?2008, 47, 3829–3832.
[63]
Ahn, C.W.; Park, H.Y.; Nahm, S.; Uchino, K.; Lee, H.G.; Lee, H.J. Structural variation and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Sensor. Actuator. A-Phys?2007, 136, 255–260.
[64]
Guo, Y.P.; Kakimoto, K.; Ohsato, H. Structure and electrical properties of lead-free (Na0.5K0.5) NbO3-BaTiO3 ceramics. Jpn. J. Appl. Phys. Pt. 1?2004, 43, 6662–6666.
[65]
Ahn, C.W.; Park, C.S.; Viehland, D.; Nahm, S.; Kang, D.H.; Bae, K.S.; Priya, S. Correlation between phase transitions and piezoelectric properties in lead-Free (K,Na,Li)NbO3-BaTiO3 ceramics. Jpn J. Appl. Phys?2008, 47, 8880–8883.
[66]
Zhang, S.T.; Kounga, A.B.; Aulbach, E.; Granzow, T.; Jo, W.; Kleebe, H.J.; Rodel, J. Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties. J. Appl. Phys?2008, 103, 034107.
[67]
Zhang, S.T.; Kounga, A.B.; Aulbach, E.; Jo, W.; Granzow, T.; Ehrenberg, H.; Rodel, J. Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties. J. Appl. Phys?2008, 103, 034108.
[68]
Takenaka, T.; Nagata, H.; Hiruma, Y.; Yoshii, Y.; Matumoto, K. Lead-free piezoelectric ceramics based on perovskite structure. J. Electroceram?2007, 19, 259–265.
[69]
Nagata, H.; Yoshida, M.; Makiuchi, Y.; Takenaka, T. Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. Pt. 1?2003, 42, 7401–7403.