全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Electrical Capacitance Volume Tomography: Design and Applications

DOI: 10.3390/s100301890

Keywords: electrical capacitance volume tomography, ECT, ECVT, capacitance sensor, multi-phase flow, non-intrusive testing, process imaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research.

References

[1]  Kunii, D.O.; Levenspiel, O. Fluidization Engineering, 2nd ed. ed.; Butterworth-Heinemann: Boston, MA, USA, 1991; p. 491.
[2]  Fan, L.S.; Zhu, C. Principles of Gas-Solid Flows; Cambridge University Press: New York, NY, USA, 1998; p. 557.
[3]  Kristensen, H.G.; Schaefer, T. Granulation-A Review of Pharmaceutical Wet-Granulation. Drug Develop. Ind. Pharm?1987, 13, 803–872.
[4]  Cohen, J.S.; Yang, T.C.S. Progress in Food Dehydration. Trends Food Sci. Tech?1995, 6, 20–25.
[5]  Dixit, R.; Puthli, S. Fluidization Technologies: Aerodynamic Principles and Process Engineering. J. Pharm. Sci?2009, 98, 3933–3960.
[6]  Fan, L.S. Gas-Liquid-Solid Fluidization Engineering; Butterworths: Boston, MA, USA, 1989; p. 763.
[7]  Geldart, D.; Kelsey, J.R. Use of Capacitance Probes in Gas Fluidized-Beds. Powder Tech?1972, 6, 45–50.
[8]  Yutani, N.; Ho, T.C.; Fan, L.T.; Walawender, W.P.; Song, J.C. Statistical Study of the Grid Zone Behavior in a Shallow Gas-Solid Fluidized-Bed Using a Mini-Capacitance Probe. Chem. Eng. Sci?1983, 38, 575–582.
[9]  Cui, H.P.; Chaouki, J. Effects of Temperature on Local Two-Phase Flow Structure in Bubbling and Turbulent Fluidized Beds of FCC Particles. Chem. Eng. Sci?2004, 59, 3413–3422.
[10]  Liu, J.Z.; Grace, J.R.; Bi, X.T. Novel Multifunctional Optical-Fiber Probe: I. Development and Validation. AIChE J?2003, 49, 1405–1420.
[11]  Liu, J.Z.; Grace, J.R.; Bi, X.T. Novel Multifunctional Optical-Fiber Probe: II. High-Density CFB Measurements. AIChE J?2003, 49, 1421–1432.
[12]  Kang, W.K.; Sutherla, J.P.; Osberg, G.L. Pressure Fluctuations in a Fluidized Bed with and without Screen Cylindrical Packings. Ind. Eng. Chem. Fund?1967, 6, 499–504.
[13]  Fan, L.T.; Ho, T.C.; Hiraoka, S.; Walawender, W.P. Pressure-Fluctuations in a Fluidized-Bed. AIChE J?1981, 27, 388–396.
[14]  Xie, H.Y.; Geldart, D. The Response Time of Pressure Probes. Powder Tech?1997, 90, 149–151.
[15]  Peters, M.H.; Fan, L.S.; Sweeney, T.L. Study of Particle Ejections in the Freeboard Region of a Fluidized-Bed with an Image Carrying Probe. Chem. Eng. Sci?1983, 38, 481–485.
[16]  Du, B.; Warsito, W.; Fan, L.S. ECT Studies of the Choking Phenomenon in a Gas-Solid Circulating Fluidized Bed. AIChE J?2004, 50, 1386–1406.
[17]  Plaskowski, A.; Beck, M.S. Process Tomography. Przem. Chem?1988, 67, 104–106.
[18]  Huang, S.M.; Xie, C.G.; Salkeld, J.A.; Plaskowski, A.; Thorn, R.; Williams, R.A.; Hunt, A.; Beck, M.S. Process Tomography for Identification, Design and Measurement in Industrial-Systems. Powder Tech?1992, 69, 85–92.
[19]  Savelsberg, R.; Demco, D.E.; Blumich, B.; Stapf, S. Particle Motion in Gas-Fluidized Granular Systems by Pulsed-Field Gradient Nuclear Magnetic Resonance. Phy. Rev?2002, 65, 020301.1–020301.4.
[20]  Fennell, P.S.; Davidson, J.F.; Dennis, J.S.; Gladden, L.F.; Hayhurst, A.N.; Mantle, M.D.; Muller, C.R.; Rees, A.C.; Scott, S.A.; Sederman, A.J. A Study of the Mixing of Solids in Gas-Fluidized Beds, Using Ultra-Fast MRI. Chem. Eng. Sci?2005, 60, 2085–2088.
[21]  Wang, R.P.; Rosen, M.S.; Candela, D.; Mair, R.W.; Walsworth, R.L. Study of Gas-Fluidization Dynamics with Laser-Polarized Xe-129. J. Magn. Reson. Imaging?2005, 23, 203–207.
[22]  Holland, D.J.; Marashdeh, Q.; Muller, C.R.; Wang, F.; Dennis, J.S.; Fan, L.S.; Gladden, L.F. Comparison of ECVT and MR Measurements of Voidage in a Gas-Fluidized Bed. Ind. Eng. Chem. Res?2009, 48, 172–181.
[23]  Dechsiri, C.; Ghione, A.; van de Wiel, F.; Dehling, H.G.; Paans, A.M.J.; Hoffmann, A.C. Positron Emission Tomography Applied to Fluidization Engineering. Can. J. Chem. Eng?2005, 83, 88–96.
[24]  Dechsiri, C.; Van der Zwan, E.A.; Dehling, H.G.; Hoffmann, A.C. Dispersion of Particle Pulses in Fluidized Beds Measured by Positron Emission Tomography. AICHE J?2005, 51, 791–801.
[25]  Simons, S.J.R. Imaging Techniques for Fluidized-Bed Systems-A Review. Chem. Eng. J. Bio. Eng. J?1995, 56, 83–93.
[26]  Rowe, P.N.; Partridg, B. An X-Ray Study of Bubbles in Fluidised Beds. Trans. Inst. Chem. Eng. Chem. Eng?1965, 43, 157–161.
[27]  Rowe, P.N.; Partridge, B.A. An X-ray Study of Bubbles in Fluidised Beds. Chem. Eng. Res. Des?1997, 75, S116–S134.
[28]  Clough, D.E.; Weimer, A.W. Time-Dependent Behavior of Bubble Volume in Fluidized-Beds. Ind. Eng. Chem. Fund?1985, 24, 235–241.
[29]  Wang, Z.C.; Afacan, A.; Nandakumar, K.; Chuang, K.T. Porosity Distribution in Random Packed Columns by Gamma Ray Tomography. Chem. Eng. Pr?2001, 40, 209–219.
[30]  Patel, A.K.; Waje, S.S.; Thorat, B.N.; Mujumdar, A.S. Tomographic Diagnosis of Gas Maldistribution in Gas-Solid Fluidized Beds. Powder Tech?2008, 185, 239–250.
[31]  Williams, R.A.; Beck, M.S. Process tomography: principles, techniques, and applications; Butterworth-Heinemann: Boston, MA, USA, 1995; pp. 581–588.
[32]  Xie, C.G.; Huang, S.M.; Hoyle, B.S.; Thorn, R.; Lenn, C.; Snowden, D.; Beck, M.S. Electrical Capacitance Tomography for Flow Imaging-System Model for Development of Image-Reconstruction Algorithms and Design of Primary Sensors. IEE Proceedings-G Circuits Devices Syst?1992, 139, 89–98.
[33]  Yang, W.Q.; Peng, L.H. Image Reconstruction Algorithms for Electrical Capacitance Tomography. Measure. Sci. Tech?2003, 14, R1–R13.
[34]  Warsito, W.; Fan, L.S. Neural Network Based Multi-Criterion Optimization Image Reconstruction Technique For Imaging Two- and Three-Phase Flow Systems Using Electrical Capacitance Tomography. Measure.Sci. Tech?2001, 12, 2198–2210.
[35]  Du, B.; Warsito, W.; Fan, L.S. Bed Nonhomogeneity in Turbulent Gas-Solid Fluidization. AIChE J?2003, 49, 1109–1126.
[36]  Marashdeh, Q.; Warsito, W.; Fan, L.S.; Teixeira, F.L. Nonlinear Forward Problem Solution for Electrical Capacitance Tomography Using Feed-Forward Neural Network. IEEE Sensors J?2006, 6, 441–449.
[37]  Wang, F.; Marashdeh, Q.; Fan, L.S.; Williams, R.A. Electrical Capacitance, Electrical Resistance, and Position Emission Tomography Techniques and Their Applications in Multi-Phase Flow Systems. In Advances in Chemical Engineering Vol. 37: Characterization of Flow, Particles, and Interfaces; Li, J.H., Ed.; Academic Press: Amsterdam, The Netherlands, 2009; pp. 179–222.
[38]  Warsito, W.; Fan, L.S. Measurement of Real-Time Flow Structures in Gas-Liquid and Gas-Liquid-Solid Flow Systems Using Electrical Capacitance Tomography (ECT). Chem. Eng. Sci?2001, 56, 6455–6462.
[39]  Warsito, W.; Fan, L.S. Neural Network Multi-Criteria Optimization Image Reconstruction Technique (Nn-Moirt) for Linear and Non-Linear Process Tomography. Chem. Eng. Process?2003, 42, 663–674.
[40]  Warsito, W.; Fan, L.S. ECT Imaging of Three-Phase Fluidized Bed Based on Three-Phase Capacitance Model. Chem. Eng. Sci?2003, 58, 823–832.
[41]  Warsito, W.; Fan, L.S. Dynamics of Spiral Bubble Plume Motion in The Entrance Region of Bubble Columns and Three-Phase Fluidized Beds Using 3D ECT. Chem. Eng. Sci?2005, 60, 6073–6084.
[42]  Warsito, W.; Marashdeh, Q.; Fan, L.S. Electrical Capacitance Volume Tomography (ECVT). IEEE Sens. J?2007, 7, 525–535.
[43]  Fasching, G.E.; Smith, N.S. High Resolution Capacitance Imaging System. US Dept. Energy?1988, 37. DOE/METC-88/4083.
[44]  Fasching, G.E.; Smith, N.S. A Capacitive System for 3-Dimensional Imaging of Fluidized-Beds. Rev. Sci. Instr?1991, 62, 2243–2251.
[45]  Xie, C.G.; Reinecke, N.; Beck, M.S.; Mewes, D.; Williams, R.A. Electrical Tomography Techniques for Process Engineering Applications. Chem. Eng. J. Biol. Eng. J?1995, 56, 127–133.
[46]  Yang, W.Q.; Beck, M.S.; Byars, M. Electrical Capacitance Tomography-from Design to Applications. Measurement Control?1995, 28, 261–266.
[47]  Beck, M.S.; Byars, M.; Dyakowski, T.; Waterfall, R.; He, R.; Wang, S.J.; Yang, W.Q. Principles and Industrial Applications of Electrical Capacitance Tomography. Meas. Control?1997, 30, 197–200.
[48]  Dyakowski, T.; Edwards, R.B.; Xie, C.G.; Williams, R.A. Application of Capacitance Tomography to Gas-Solid Flows. Chem. Eng. Sci?1997, 52, 2099–2110.
[49]  Bennett, M.A.; West, R.M.; Luke, S.P.; Williams, R.A. The Investigation of Bubble Column and Foam Processes Using Electrical Capacitance Tomography. Miner. Eng?2002, 15, 225–234.
[50]  Chaplin, G.; Pugsley, T.; van der Lee, L.; Kantzas, A.; Winters, C. The Dynamic Calibration of an Electrical Capacitance Tomography Sensor Applied to the Fluidized Bed Drying of Pharmaceutical Granule. Meas. Sci. Tech?2005, 16, 1281–1290.
[51]  Ostrowski, K.L.; Luke, S.P.; Bennett, M.A.; Williams, R.A. Application of Capacitance Electrical Tomography for on-Line and off-Line Analysis of Flow Pattern in Horizontal Pipeline of Pneumatic Conveyer. Chem. Eng. J?2000, 77, 43–50.
[52]  Ostrowski, K.L.; Luke, S.P.; Williams, R.A. Simulation of the Performance of Electrical Capacitance Tomography for Measurement of Dense Phase Pneumatic Conveying. Chem. Eng. J?1997, 68, 197–205.
[53]  Du, B.; Warsito, W.; Fan, L.S. ECT Studies of Gas-Solid Fluidized Beds of Different Diameters. Ind. Eng. Chem. Res?2005, 44, 5020–5030.
[54]  Du, B.; Warsito, W.; Fan, L.S. Imaging the Choking Transition in Gas-Solid Risers Using Electrical Capacitance Tomography. Ind. Eng. Chem. Res?2006, 45, 5384–5395.
[55]  Du, B.; Warsito, W.; Fan, L.S. Behavior of the Dense-Phase Transportation Regime in a Circulating Fluidized Bed. Ind. Eng. Chem. Res?2006, 45, 3741–3751.
[56]  Fan, L.S.; Warsito, W.; Du, B. Electrical Capacitance Tomography Imaging of Gas-Solid and Gas-Liquid-Solid Fluidized Bed Systems. J. Vis?2004, 7, 5.
[57]  Marashdeh, Q.; Warsito, W.; Fan, L.S.; Teixeira, F.L. A Nonlinear Image Reconstruction Technique for ECT Using a Combined Neural Network Approach. Meas. Sci. Tech?2006, 17, 2097–2103.
[58]  You, J.; Zhu, C.; Du, B.; Fan, L.S. Heterogeneous Structure in Gas-Solid Riser Flows. AIChE J?2008, 54, 1459–1469.
[59]  Wajman, R.; Banasiak, R.; Mazurkiewicz, L.; Dyakowski, T.; Sankowski, D. Spatial Imaging with 3D Capacitance Measurements. Meas. Sci. Tech?2006, 17, 2113–2118.
[60]  Soleimani, M.; Mitchell, C.N.; Banasiak, R.; Wajman, R.; Adler, A. Four-Dimensional Electrical Capacitance Tomography Imaging Using Experimental Data. Prog. Electromagn. Res?2009, 90, 171–186.
[61]  Warsito, W.; Marashdeh, Q.; Fan, L.S. Some Comments on Spatial Imaging with 3D Capacitance Measurements. Meas. Sci. Tech?2007, 18, 3665–3667.
[62]  Wang, F.; Marashdeh, Q.; Warsito, W.F. Imaging Gas/Solid Jet Penetration in a Gas-Solid Fluidized Bed Using Electrical Capacitance Volume Tomography. Proceedings of AIChE Annual Meeting, Philadelphia, PA, USA, 16–21 November 2008.
[63]  Tech4Imaging, Available online: www.Tech4Imaging.com (accessed on 6 February 2010).
[64]  Williams, A.; Wang, M.; Ellul, C.; Pourkashanian, M. Electrical Capacitance Tomography for High Temperature Flames. INFUB, Vilamoura, Portugal, March 25–28, 2008.
[65]  Marashdeh, Q.; Fan, L.S.; Du, B.; Warsito, W. Electrical Capacitance Tomography-A Perspective. Ind. Eng. Chem. Res?2008, 47, 3708–3719.
[66]  Wang, F.; Yu, Z.; Marashdeh, Q.; Fan, L.S. Horizontal Gas and Gas/Solid Jet Penetration in a Gas-Solid Fluidized Bed. Chem. Eng. Sci?1971, 26, 923–935.
[67]  FY 09 Seed Fund Awards. Available online: http://www.nasa.gov/pdf/368044main_09_seedfund_awards.pdf (accessed on 5 February 2010).
[68]  Pfeffer, R.; Zakin, J.; Park, A.H. Preface to the L.S. Fan Festschrift. Ind. Eng. Chem. Res?2009, 48, 2–3.
[69]  Marashdeh, Q.; Wang, F.; Fan, L.S.; Warsito, W. Velocity Measurement of Multi-Phase Flows Based on Electrical Capacitance Volume Tomography. Sensors, 2007 IEEE, Atlanta, GA, USA, October 28–31, 2007; pp. 1017–1019.
[70]  Marashdeh, Q.; Wang, F.; Warsito, W.; Fan, L.S. 3D Velocity Profiles of Multi-Phase Flow Systems Using Electrical Capacitance Volume Tomography. Proceedings of 3rd International Workshop on Process Tomography (IWPT-3), Tokyo, Japan, April 17–19, 2009.
[71]  Wang, F.; Marashdeh, Q.; Warsito, W.; Fan, L.S. Three-Dimensional Velocimetry in a Fluidized Bed System Using Electrical Capacitance Volume Tomography. 8th World Congress of Chemical Engineering and 9th International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering, Montreal, QC, Canada, August 23–27, 2009.
[72]  Wang, F.; Marashdeh, Q.; Warsito, W.; Fan, L.S. Validation of 3-D ECVT Velocimetry in Multi-Phase Flow Systems. Proceedings of AIChE Annual Meeting, Nashville, TN, USA, November 8–13, 2009.
[73]  Kajishima, T.; Takiguchi, S. Interaction between Particle Clusters and Particle-Induced Turbulence. Int. J. Heat. Fluid Flow?2002, 23, 639–646.
[74]  Fan, L.S. Advances in Gas-Liquid-Solid Fluidization. In Fluidization-XI; Arena, U., Chirone, R., Miccio, M., Salatino, P., Eds.; Engineering Conferences International Press: New York, NY, USA, 2004; pp. 1–20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133