Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12? and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.
References
[1]
White, R.M.; Voltmer, F.W. Direct Piezoelectric Coupling to Surface Elastic Waves. Appl. Phys. Lett?1965, 7, 314–316, doi:10.1063/1.1754276.
[2]
Yamanaka, K.; Ishikawa, S.; Nakaso, N.; Takeda, N.; Mihara, T.; Tsukahara, Y. Ball SAW device for hydrogen gas sensor. IEEE Ultrasonics Symposium, Institute of Electrical and Electronics Engineers Inc, Honolulu, HI, USA, December 2003; pp. 299–302.
Kumar, R.V.; Fray, D.J. Development oF Solid State Hydrogen Sensors. Sens. Actuat?1988, 15, 185–191, doi:10.1016/0250-6874(88)87007-0.
[6]
Cabrera, A.L.; Aruayo-Soto, R. Hydrogen Absorption in Palladium Films Sensed by Changes in Their Resistivity. Catal. Lett?1997, 45, 79–83, doi:10.1023/A:1019078419537.
[7]
Lukaszewski, M.; Czerwinski, A. Electrochemical Quartz Crystal Microbalance Study on Hydrogen Absorption and Desorption into/from Palladium and Palladium-Noble Metal Alloys. J. Electroanal. Chem?2006, 589, 87–95, doi:10.1016/j.jelechem.2006.01.014.
[8]
Christofides, C.; Mandelis, A. Solid State Sensors for Trace Hydrogen Gas Detection. J. Appl. Phys?1990, 68, R1–R30, doi:10.1063/1.346398.
[9]
Anisimkin, V.I.; Kotelyanskii, I.M.; Verardi, P.; Verona, E. Elastic Properties of Thin-Film Palladium for Surface Acoustic Wave (SAW) Sensors. Sens. Actuat?1995, 23, 203–208, doi:10.1016/0925-4005(94)01277-O.
[10]
Kuschnereit, R.; Fath, H.; Kolomenskii, A.A.; Szabadi, M.; Hess, P. Mechaical and Elastic Properties of Amorphous Hydrogenated Silicon Films Studied by Broadband Surface Acoustic Wave Spectroscopy. Appl. Phys?1995, 61, 269–276, doi:10.1007/BF01538192.
[11]
Jakubik, W.P.; Urbanczyk, M.; Meciak, E.; Pustelny, T. Surface Acoustic Wave Hydrogen Gas Sensor Based on Layered Structure of Palladium/Metal-Free Phthalocyanine. Bull. Pol. Acad. Sci-Chem?2008, 56, 133–138.
Baranowski, B.; Majchrzak, S.; Flanagan, T.B. The Volume Increase of FCC Metals and Alloys due to Interstitial Hydrogen over a Wide Range of Hydrogen Contents. J. Phys. F: Metal Phys?1971, 1, 258–261, doi:10.1088/0305-4608/1/3/307.
[16]
Peisl, H. Topics in Applied Physics, Hydrogen in Metals I: Basic Properties; Springer-Verlag: Berlin, Germany, 1978; pp. 53–74.
[17]
Fabre, A.; Finot, E.; Demoment, J.; Contreras, S. In Situ Measurement of Elastic Properties of PdHx, PdDx, and PdTx. J. Alloys. Compds?2003, 356–357, 372–376.
[18]
Madou, M.J. Fundamentals of Microfabrication, 2nd ed ed.; CRC Press: Boca Raton, FL, USA, 2002.
[19]
Geerken, B.M.; Griessen, R.; Huisman, L.M. Contribution of Optical Phonon to the Elastic Moduli of PdHx and PdDx. Phys. Rev. B?1982, 26, 1637–1650, doi:10.1103/PhysRevB.26.1637.
[20]
Harada, S.; Kasahara, T.; Tamaki, S. Elastic Constants and Thermal Expansion Coefficient of Hydrogenated Pd Alloys. J. Phys. Soc. Jpn?1985, 54, 168–174, doi:10.1143/JPSJ.54.168.
[21]
Mason, W.P. Physical Acoustics Principles and Methods; Academic Press: New York, NY, USA, 1972.
[22]
Auld, B.A. Acoustic Fields and Waves in Solids; John Wiley & Sons: New York, NY, USA, 1973.
[23]
Datta, S. Surface Acoustic Wave Devices; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986.
[24]
Wong, K.; Tam, W. Analysis of the Frequency Response of SAW Filters Using Finite-Difference Time-Domain Method. IEEE Trans. Microwave. Theory?2005, 53, 3364–3370, doi:10.1109/TMTT.2005.858385.
[25]
Lerch, R. Simulation of Piezoelectric Devices by Two- and Three-Dimensional Finite Elements. IEEE T Ultrason. Ferroelectr?1990, 37, 233–247, doi:10.1109/58.55314.
[26]
Xu, G. Direct Finite-Element Analysis of The Frequency Response of A Y-Z Lithium Niobate SAW Filter. Smart Mater. Struct?2000, 9, 973–980, doi:10.1088/0964-1726/9/6/401.
[27]
Ippolito, S.J.; Kalantar-Zadeh, K.; Powell, D.A.; Wlodarski, W. A 3-Dimensional Approach for Simulating Acoustic Wave Propagation in Layered SAW Devices. Proceedings of IEEE Ultrasonics Symposium, Honolulu, HI, USA, December 2003; pp. 303–306.
[28]
Ventura, P.; Hode, J.M.; Solal, M. A New Efficient Combined FEM and Periodic Green’s Function Formalism for the Analysis of Periodic Structures. IEEE Ultrason. Symp?1995, 1, 263–268.
[29]
Makkonen, T. Numerical Simulations of Micro-Acoustic Resonators and Filters. Ph.D. Thesis; Helsinki University of Technology, Helsinki, Finland, 2005.
[30]
EL Gowini, M.M.; Moussa, W.A. A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis. Sensors?2009, 9, 9945–9964, doi:10.3390/s91209945. 22303156
[31]
Ippolito, S.J.; Kalantar-Zadeh, K.; Powell, D.A.; Wlodarski, W. A Finite Element Approach for 3-Dimensional Simulation of Layered Acoustic Wave Transducers. Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices, Sydney, NSW, Australia, December 2002; pp. 541–544.
[32]
Wong, K.K. Properties of Lithium Niobate; INSPEC, The Institution for Electrical Engineers: London, UK, 2002.
[33]
Didenko, I.S.; Hickernell, F.S.; Naumenko, N. The Experimental and Theoretical Characterization of the SAW Propagation Properties for Zinc Oxide Films on Silicon Carbide. IEEE T Ultrason. Ferroelectr?2000, 47, 179–187, doi:10.1109/58.818760.
[34]
Xu, G.; Jiang, Q. A Finite Element Analysis of Second Order Effects on the Frequency Response of A SAW Device. J. Intel. Mat. Syst. Struct?2001, 12, 69–77.
[35]
Ippolito, S.J.; Kalantar-Zadeh, K.; Wlodarski, W.; Powell, D.A. Finite-Element Analysis for Simulation of Layered SAW Devices with XY LiNbO3 Substrate. Proceedings of Smart Structures, Devices, and Systems, Melbourne, Australia, December 2002; pp. 120–131.
[36]
Ballantine, D.S.; White, R.M.; Martin, S.J.; Ricco, A.J.; Frye, G.C.; Zellers, E.T.; Wohltjen, H. Acoustic Wave Sensors; Theory, Design and Physico-Chemical Applications; Academic Press: San Diego, CA, USA, 1997.
[37]
Rafizadeh, H. Lattice Dynamics of Metal Hydrides. Phys. Rev. B?1981, 23, 1628–1632, doi:10.1103/PhysRevB.23.1628.
[38]
Wicke, E.; Brodowsky, H. Topics in Applied Physics, Hydrogen in Metals II: Application Oriented Properties; Springer-Verlag: Berlin, Germany, 1978.
[39]
D’Amico, A.; Palma, A.; Veradi, P. Hydrogen Sensor Using a Palladium Coated Surface Acoustic Wave Delay-Line. Proceedings of IEEE Ultrasonsics Symposium, San Diego, CA, USA, November 1982; pp. 308–311.