Recent studies have shown that in realistic wireless sensor network environments links are extremely unreliable. To recover from corrupted packets, most routing schemes with an assumption of ideal radio environments use a retransmission mechanism, which may cause unnecessary retransmissions. Therefore, guaranteeing energy-efficient reliable data transmission is a fundamental routing issue in wireless sensor networks. However, it is not encouraged to propose a new reliable routing scheme in the sense that every existing routing scheme cannot be replaced with the new one. This paper proposes a Distributed and Reliable Data Transmission (DRDT) scheme with a goal to efficiently guarantee reliable data transmission. In particular, this is based on a pluggable modular approach so that it can be extended to existing routing schemes. DRDT offers reliable data transmission using neighbor nodes, i.e., helper nodes. A helper node is selected among the neighbor nodes of the receiver node which overhear the data packet in a distributed manner. DRDT effectively reduces the number of retransmissions by delegating the retransmission task from the sender node to the helper node that has higher link quality to the receiver node when the data packet reception fails due to the low link quality between the sender and the receiver nodes. Comprehensive simulation results show that DRDT improves end-to-end transmission cost by up to about 45% and reduces its delay by about 40% compared to existing schemes.
References
[1]
Al-Karaki, J.; Kamal, A. Routing Techniques in Wireless Sensor Networks: A Survey. IEEE Wirel. Commun?2004, 11, 6–28.
[2]
Ingelrest, F.; Simplot-Ryl, D.; Stojmenovic, I. Optimal Transmission Radius for Energy Efficient Broadcasting Protocols in Ad Hoc and Sensor Networks. IEEE Trans. Parallel Distrib. Syst?2006, 17, 536–547, doi:10.1109/TPDS.2006.74.
[3]
Ganesan, D.; Krishnamachari, B.; Woo, A.; Culler, D.; Estrin, D.; Wicker, S. Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks. Technical report; CS TR 02-0013;; UCLA: Los Angeles, CA, USA, 2002.
[4]
Zhao, J.; Govindan, R. Understanding Packet Delivery Performance in Dense Wireless Sensor Networks. Proceedings of ACM International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, November, 2003; pp. 1–13.
[5]
Reason, J.M.; Rabaey, J.M. A Study of Energy Consumption and Reliability in a Multi-hop Sensor Network. SIGMOBILE Mob. Comput. Commun. Rev?2004, 8, 84–97, doi:10.1145/980159.980170.
[6]
Stann, F.; Heidemann, J. RMST: Reliable Data Transport in Sensor Networks. Proceedings of IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, May, 2003; pp. 102–112.
Woo, A.; Tong, T.; Culler, D. Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks. Proceedings of ACM International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, November, 2003; pp. 14–27.
[9]
Couto, D.S.J.D.; Aguayo, D.; Bicket, J.C.; Morris, R. A High-throughput Path Metric for Multi-hop Wireless Routing. Wirel. Netw?2005, 11, 419–434, doi:10.1007/s11276-005-1766-z.
[10]
Seada, K.; Zuniga, M.; Helmy, A.; Krishnamachari, B. Energy Efficient Forwarding Strategies for Geographic Routing in Wireless Sensor Networks. Proceedings of ACM International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, November, 2004; pp. 108–121.
[11]
Zamalloa, M.Z.; Seada, K.; Krishnamachari, B.; Helmy, A. Efficient Geographic Routing over Lossy Links in Wireless Sensor Networks. ACM Trans. Sens. Netw?2008, 4, 1–33.
[12]
Gu, Y.; He, T. Data Forwarding in Extremely Low Duty-cycle Sensor Networks with Unreliable Communication Links. Proceedings of ACM International Conference on Embedded Networked Sensor Systems, Sydney, Australia, November, 2007; pp. 321–334.
[13]
Karp, B.; Kung, H.T. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. Proceedings of ACM International Conference on Mobile Computing and Networking, Boston, MA, USA, August, 2000; pp. 243–254.
[14]
Ferrara, D.; Galluccio, L.; Leonardi, A.; Morabito, G.; Palazzo, S. MACRO: An Integrated MAC/Routing Protocol for Geographic Forwarding in Wireless Sensor Networks. Proceedings of IEEE International Conference on Computer Communications, Miami, FL, USA, March, 2005; pp. 1770–1781.
[15]
Kotz, D.; Newport, C.; Elliott, C. The Mistaken Axioms of Wireless-Network Research. Technical report;; Dartmouth College: Hanover, NH, USA, 2003.
[16]
Cerpa, A.; Busek, N.; Estrin, D. SCALE: A tool for Simple ConnectivityTechnical report. 2003.
[17]
Cerpa, A.; Wong, J.L.; Kuang, L.; Potkonjak, M.; Estrin, D. Statistical Model of Lossy Links in Wireless Sensor Networks. Proceedings of ACM/IEEE International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, USA, April, 2005; pp. 81–88.
[18]
Draves, R.; Padhye, J.; Zill, B. Comparison of Routing Metrics for Static Multi-hop Wireless Networks. Proceedings of ACM International Conference of the Special Interest Group on Data Communication, Portland, OR, USA, August, 2004; pp. 133–144.
[19]
Cao, Q.; Abdelzaher, T.F.; He, T.; Kravets, R. Cluster-Based Forwarding for Reliable End-to-End Delivery in Wireless Sensor Networks. Proceedings of IEEE International Conference on Computer Communications, Anchorage, AK, USA, May, 2007; pp. 1928–1936.
[20]
Zuniga, M.; Krishnamachari, B. Analyzing the Transitional Region in Low Power Wireless Links. Proceedings of IEEE International Conference on Sensors and Ad Hoc Communications and Networks, Santa Clara, CA, USA, October, 2004; pp. 517–526.
[21]
Zamalloa, M.Z.; Krishnamachari, B. An Analysis of Unreliability and Asymmetry in Low-power Wireless Links. ACM Trans. Sens. Netw?2007, 3, 7, doi:10.1145/1240226.1240227.
[22]
CC1000 Data Sheet. Texas Instruments Incorporated: Dallas, TX, USA, 2007.
[23]
Kim, M.; Mutka, M.W.; Cho, S.H.; Choo, H. A Dissemination Protocol to Guarantee Data Accessibility within N-Hops for Wireless Sensor Networks. Proceedings of IEEE Hawaii International Conference on Systems Science, Waikoloa, HI, USA, January, 2009; pp. 1–8.
[24]
Cao, Q.; He, T.; Fang, L.; Abdelzaher, T.F.; Stankovic, J.A.; Son, S.H. Efficiency Centric Communication Model for Wireless Sensor Networks. Proceedings of IEEE International Conference on Computer Communications, Miami, FL, USA, May, 2006; pp. 1–12.
[25]
Leong, B.; Mitra, S.; Liskov, B. Path Vector Face Routing: Geographic Routing with Local Face Information. Proceedings of IEEE International Conference on Network Protocols, Boston, MA, USA, November, 2005; pp. 147–158.
[26]
Frey, H.; Stojmenovic, I. On Delivery Guarantees of Face and Combined Greedy-face Routing in Ad Hoc and Sensor Networks. Proceedings of ACM International Conference on Mobile Computing and Networking, Los Angeles, CA, USA, September, 2006; pp. 390–401.