全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Quantitative Modeling of Coupled Piezo-Elastodynamic Behavior of Piezoelectric Actuators Bonded to an Elastic Medium for Structural Health Monitoring: A Review

DOI: 10.3390/s100403681

Keywords: piezoelectric actuators, coupled piezo-elastodynamic behavior, elastic waves, structural health monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.

References

[1]  Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vibrat?2006, 295, 753–780, doi:10.1016/j.jsv.2006.01.020.
[2]  Song, F.; Huang, G.L.; Kim, J.H.; Haran, S. On the study of surface wave propagation in concrete structures using a piezoelectric actuator/sensor system. Smart Mater. Struct?2008, 17, 055024, doi:10.1088/0964-1726/17/5/055024.
[3]  Staszewski, W. J.; Mahzan, S.; Traynor, R. Health monitoring of aerospace composite structures–active and passive approach. Compos. Sci. Technol?2009, 69, 1678–1685, doi:10.1016/j.compscitech.2008.09.034.
[4]  Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors; Academic Press: Burlington, MA, USA, 2007.
[5]  Crawley, E.F. Intelligent structures for aerospace: a technology overview and assessment. AIAA J?1994, 32, 1689–1699, doi:10.2514/3.12161.
[6]  Song, G.; Qiao, P.Z.; Binienda, W.K.; Zou, G.P. Active vibration damping of composite beam using smart sensors and actuators. J. Aerosp. Eng?2002, 15, 97–103, doi:10.1061/(ASCE)0893-1321(2002)15:3(97).
[7]  Yu, L.; Santoni-Bottai, G.; Xu, B.; Liu, W.; Giurgiutiu, V. Piezoelectric wafer active sensors for in situ ultrasonic-guided wave SHM. Fatigue Fract. Eng. Mater. Struct?2008, 31, 611–628, doi:10.1111/j.1460-2695.2008.01256.x.
[8]  Liu, Y.J.; Fan, H.; Yang, J.S. Analysis of the shear stress transferred from a partially electroded piezoelectric actuator to an elastic substrate. Smart Mater. Struct?2000, 9, 248–254, doi:10.1088/0964-1726/9/2/406.
[9]  Yang, Z.T.; Hu, Y.T.; Yang, J.S. Thin film piezoelectric actuators with nonuniform thickness for reducing actuating shear stress concentration. J. Intelligent Mater. Syst. Struct?2009, 20, 729–731.
[10]  Lanzara, G.; Yoon, Y.; Kim, Y.; Chang, F.-K. Influence of interface degradation on the performance of piezoelectric actuators. J. Intelligent Mater. Syst. Struct?2009, 20, 1699–1710, doi:10.1177/1045389X09341198.
[11]  Bailey, T.; Hubbard, J.E. Distributed piezoelectric polymer active vibration control of a cantilever beam. AIAA J. Guid. Control Dyn?1985, 9, 605–611.
[12]  Crawley, E.F.; de Luis, J. Use of piezoelectric actuators as elements of intelligent structures. AIAA J?1987, 25, 1373–1385, doi:10.2514/3.9792.
[13]  Crawley, E.F.; Anderson, E.H. Detailed models of piezoceramic actuation of beams. J. Intelligent Mater. Syst. Struct?1990, 1, 4–25, doi:10.1177/1045389X9000100102.
[14]  Im, S.; Atluri, S.N. Effects of a piezo-actuator on a finite deformation beam subjected to general loading. AIAA J?1989, 27, 1801–1807, doi:10.2514/3.10337.
[15]  Lin, M.W.; Rogers., C.A. Modeling of the actuation mechanism in a beam structure with induced strain actuators. Proceedings of the 34th AIAA/ASME/ASC/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Atlanta, GA, USA, 1993.
[16]  Lin, M.W.; Rogers., C.A. Actuation response of a beam structure with induced strain actuators. Adaptive Struct. Mater. Syst?1993, 35, 129–139.
[17]  Richard, J.S.; Cudney, H.H. Modeling multiple layer piezoelectric actuators in active structural control. Proceedings of SPIE Smart Structures and Materials, Albuquerque, NM, USA, 1993.
[18]  Lee, S.S.; Sun, S.W. Vibrational formulation for Timoshenko beam element by separation of deformation mode. Commun. Num. Meth. Eng?1994, 10, 599–610, doi:10.1002/cnm.1640100804.
[19]  Lee, C.K.; Moon, F.C. Laminated piezopolymer plates for torsion and bending sensors and actuators. J. Acoust. Soc. Am?1989, 85, 2432–2439, doi:10.1121/1.397792.
[20]  Tzou, H.S.; Gadre, M. Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration control. J. Sound Vibrat?1989, 132, 433–450, doi:10.1016/0022-460X(89)90637-8.
[21]  Crawley, E.F.; Lazarus, K.B. Induced strain actuation of isotropic and anisotropic plates. AIAA J?1991, 29, 944–951, doi:10.2514/3.10684.
[22]  Wang, B.T.; Rogers, C.A. Laminated plate theory for spatially distributed induced strain actuators. J. Compos. Mater?1991, 25, 433–452.
[23]  Batra, R.C.; Liang, X.Q.; Yang, J.S. The vibration of a simply supported rectangular elastic plate due to piezoelectric actuators. Int. J. Solids Struct?1996, 33, 1597–1618, doi:10.1016/0020-7683(95)00116-6.
[24]  Tzou, H.S.; Zhong, J.P. Electromechanics and vibrations of piezoelectric shell distributed systems: theory and applications. Trans. ASME J. Dyn. Syst. Meas. Control?1993, 115, 506–517, doi:10.1115/1.2899129.
[25]  Hagood, N.W.; Chung, W.H. Modeling of piezoelectric actuator dynamics for active structural control. J. Intelligent Mater. Syst. Struct?1990, 1, 327–354, doi:10.1177/1045389X9000100305.
[26]  Tauchert, T.R. Piezothermalelastic behavior of a laminated plate. J. Therm. Stresses?1992, 15, 25–37, doi:10.1080/01495739208946118.
[27]  Mitchell, J.A.; Reddy, J.N. A study of embedded piezoelectric layers in composite cylinders. Trans. ASME J. Appl. Mech?1995, 62, 166–173, doi:10.1115/1.2895898.
[28]  Banks, H.T.; Smith, R.C. The modeling of piezoelectric patch interactions with shells, plates and beams. Quart. Appl. Math?1995, 53, 353–381.
[29]  Reddy, J.N. On laminated composite plates with integrated sensors and actuators. Eng. Struct?1997, 21, 568–593.
[30]  Han, J.H.; Lee, I. Analysis of composite plates with piezoelectric actuators for vibration control using layerwise displacement theory. Compos. B: Eng?1998, 29, 519–672, doi:10.1016/S1359-8368(98)00007-9.
[31]  Yang, S.; Ngol, B. General sensor equation and actuator equation for the theory of laminated piezoelectric plates. Smart Mater. Struct?1999, 8, 411–415, doi:10.1088/0964-1726/8/3/312.
[32]  Wang, D.H.; Huang, S.L. Health monitoring and diagnosis for flexible structures with PVDF piezoelectric film sensor array. J. Intelligent Mater. Syst. Struct?2000, 11, 482–491.
[33]  Benjeddou, A.; Trindade, M.A.; Ohayon, R. Piezoelectric actuation mechanism for intelligent sandwich structures. Smart Mater. Struct?2000, 9, 328–335, doi:10.1088/0964-1726/9/3/313.
[34]  Wang, X.M.; Shen, Y.P. On the characterization of piezoelectric actuators attached to structures. Smart Mater. Struct?2001, 7, 389–395.
[35]  Wang, Q.; Quek, S.T. A model for the analysis of beams with embedded piezoelectric layers. J. Intelligent Mater. Syst. Struct?2002, 11, 61–70.
[36]  Ryu, D.H.; Wang, K.W. Characterization of surface bonded piezoelectric actuators on curved beams. Smart Mater. Struct?2002, 11, 377–388, doi:10.1088/0964-1726/11/3/308.
[37]  Zhuk, Y.A.; Senchenkov, I.K. Modeling the stationary vibration and dissipative heating of thin-walled inelastic elements with piezoactive layers. Int. Appl. Mech?2004, 40, 546–556, doi:10.1023/B:INAM.0000037302.96867.2c.
[38]  Qiu, Z.C.; Zhang, X.M.; Wu, H.X.; Zhang, H.H. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. J. Sound Vibrat?2007, 301, 521–543, doi:10.1016/j.jsv.2006.10.018.
[39]  Kumar, R.; Mishra, B.K.; Jain, S.C. Static and dynamic analysis of smart cylindrical shell. Finite Elem. Anal. Des?2008, 45, 13–24, doi:10.1016/j.finel.2008.07.005.
[40]  Zheng, S.J.; Dai, F.; Song, Z. Active control of piezothermalelastic FGM shells using integrated piezoelectric sensor/actuator layers. Int. J. Appl. Electromagn?2009, 30, 107–124.
[41]  Giurgiutiu, V. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J. Intelligent Mater. Syst. Struct?2005, 16, 291–305, doi:10.1177/1045389X05050106.
[42]  Raghavan, A.; Cesnik, C.E.S. Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Mater. Struct?2005, 14, 1448–1461, doi:10.1088/0964-1726/14/6/037.
[43]  Nieuwenhuis, J.H.; Neumann, J.J., Jr; Greve, D.W.; Oppenheim, I.J. Generation and detection of guided waves using PZT wafer transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control?2005, 52, 2103–2111, doi:10.1109/TUFFC.2005.1561681. 16422424
[44]  Moulin, E.; Assaad, J.; Delebarre, C.; Grondel, S.; Balageas, D. Modeling of integrated Lamb waves generation systems using a coupled finite element–normal modes expansion method. Ultrasonics?2000, 38, 522–526, doi:10.1016/S0041-624X(99)00138-9. 10829718
[45]  Moulin, E.; Grondel, S.; Baouahi, M.; Assaad, J. Pseudo-3D modeling of a surface-bonded Lamb wave source (L). J. Acoust. Soc. Am?2006, 119, 2575–2578, doi:10.1121/1.2189447.
[46]  Moulin, E.; Grondel, S.; Baouahi, M.; Assaad, J.; Duquenne, L. Modeling a surface-mounted Lamb wave emission-reception system: Applications to structural health monitoring. J. Acoust. Soc. Am?2008, 124, 3521–3527, doi:10.1121/1.2996337. 19206781
[47]  Glushkov, E.; Glushkova, N.; Kvasha, O.; Seemann, W. Integral equation based modeling of the interaction between piezoelectric patch actuators and an elastic substrate. Smart Mater. Struct?2007, 16, 650–664, doi:10.1088/0964-1726/16/3/012.
[48]  Dunn, C.T.; Raghavan, A.; Kessler, S.S. Analytical axisymmetric coupled piezo-elastodynamic models for guided-wave structural health monitoring. Proceedings of the 7th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 2009.
[49]  Wang, X.D.; Meguid, S.A. On the electroelastic behavior of a thin piezoelectric actuator attached to an infinite host structure. Int. J. Solids Struct?2000, 37, 3231–3251, doi:10.1016/S0020-7683(99)00118-3.
[50]  Wang, X.D.; Huang, G.L. Wave propagation in electromechanical structures: induced by surface-bonded piezoelectric actuators. J. Intelligent Mater. Syst. Struct?2001, 12, 105–115.
[51]  Chaudhry, Z.; Rogers, C.A. The pin-force model revisted. J. Intelligent Mater. Syst. Struct?1994, 5, 347–354, doi:10.1177/1045389X9400500307.
[52]  Yang, J.S. Equations for thick elastic plates with partially electroded piezoelectric actuators and higher mode electric fields. Smart Mater. Struct?1999, 8, 73–82, doi:10.1088/0964-1726/8/1/008.
[53]  Kusculuoglu, Z.K.; Behrooz, F.; Rovston, T.J. New constitutive models for vibrations of a beam with piezoceramic patch actuator. Proceedings of SPIE Modeling, Signal processing and Control, San Diego, CA, USA, 2002.
[54]  Ikeda, T.; Raja, S.; Ueda, T. Deformation of a beam with partially debonded piezoelectric actuators. J. Intelligent Mater. Syst. Struct?2009. in press.
[55]  Giugiutiu, V.; Santoni, G.B. Extension of the shear-lag solution for structurally attached ultrasonic active sensors. AIAA J?2009, 47, 1980–1983, doi:10.2514/1.43946.
[56]  Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 1999.
[57]  Lin, X.; Yuan, F.G. Diagnostic Lamb waves in an integrated piezoelectric sensor/actuator plate: analytical and experimental studies. Smart Mater. Struct?2001, 10, 907–913, doi:10.1088/0964-1726/10/5/307.
[58]  Giurgiutiu, V. Zagrai, Characterization of piezoelectric wafer active sensors. J. Intelligent Mater. Syst. Struct?2000, 11, 959–975.
[59]  Wilcox, P.D.; Lowe, M.J.S.; Cawley, P. Mode and transducer selection for long range Lamb wave inspection. J. Intelligent Mater. Syst. Struct?2001, 12, 553–565, doi:10.1177/10453890122145348.
[60]  Santoni, G.B.; Yu, L.; Xu, B.; Giurgiutiu, V. Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. Trans. ASME J. Vib. Acoust?2007, 129, 752–762, doi:10.1115/1.2748469.
[61]  Lanza di Scalea, F.; Salamone, S. Temperature effects in ultrasonic Lamb wave structural health monitoring systems. J. Acoust. Soc. Am?2008, 124, 161–174, doi:10.1121/1.2932071. 18646963
[62]  Wang, X.D.; Huang, G.L. Wave propagation induced by multiple piezoelectric actuators in electromechanical structures. Trans. ASME J. Pressure Vessel Technol?2001, 124, 311–318.
[63]  Wang, X.D.; Huang, G.L. Wave propagation in electromechanical structures: induced by embedded piezoelectric actuators. J. Intelligent Mater. Syst. Struct?2001, 12, 117–125.
[64]  Wang, X.D.; Huang, G.L. On elastic wave propagation induced by a network of piezoelectric actuators. Acta Mech?2003, 160, 1–18, doi:10.1007/s00707-002-0969-y.
[65]  Wang, X.D.; Huang, G.L. Wave propagation generated by piezoelectric actuators attached to elastic substrates. Acta Mech?2006, 183, 155–176, doi:10.1007/s00707-006-0313-z.
[66]  Huang, G.L.; Sun, C.T. The dynamic behavior of a piezoelectric actuator bonded to an anisotropic elastic medium. Int. J. Solids Struct?2006, 43, 1291–1307, doi:10.1016/j.ijsolstr.2005.03.010.
[67]  Sekouri, E.M.; Hu, Y.R.; Ngo, A.D. Modeling of a circular plate with piezoelectric actuators. Mechatronics?2004, 14, 1007–1020, doi:10.1016/j.mechatronics.2004.04.003.
[68]  Liu, W.P.; Giurgiutiu, V. Finite element simulation of piezoelectric wafer active sensors for structural health monitoring. Proceedings of SPIE Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA, 2007.
[69]  Han, S.; Palazotto, A.N.; Leakeas, C.L. Finite element analysis of Lamb wave propagation in a thin aluminum plate. J. Aerosp. Eng?2009, 22, 185–197, doi:10.1061/(ASCE)0893-1321(2009)22:2(185).
[70]  Ende, S. V.; Lammering, R. Modeling and simulation of Lamb wave generation with piezoelectric plates. Mech. Adv. Mater. Struct?2009, 16, 188–197, doi:10.1080/15376490902746780.
[71]  Raghavan, A.; Cesnik, CES. Modeling guided wave excitation by finite-dimensional piezoelectric transducers in composite plates. Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA; 2007.
[72]  Ihn, J.-B.; Chang, F.-K. Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Struct. Health Monit?2008, 7, 5–19, doi:10.1177/1475921707081979.
[73]  Kessler, S.S.; Spearing, S.M.; Soutis, C. Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct?2002, 11, 269–278, doi:10.1088/0964-1726/11/2/310.
[74]  Giurgiutiu, V.; Zagrai, A.; Bao, J. Piezoelectric wafer embedded active sensors for aging structural health monitoring. Struct. Health Monit?2002, 1, 41–61, doi:10.1177/147592170200100104.
[75]  Mal, A.; Ricci, F.; Banerjee, S.; Shih, F. A conceptual structural health monitoring system based on vibration and wave propagation. Struct. Health Monit?2005, 4, 283–293, doi:10.1177/1475921705055254.
[76]  Zhao, X.L.; Gao, H.D.; Zhang, G.F.; Ayhan, B.; Yan, F.; Kwan, C.; Rose, J.L. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct?2007, 16, 1208–1217, doi:10.1088/0964-1726/16/4/032.
[77]  Petculescu, G.; Krishnaswamy, S.; Achenbach, J.D. Group delay measurements using modally selective Lamb wave transducers for detection and sizing of delaminations in composites. Smart Mater. Struct?2008, 17, 015007, doi:10.1088/0964-1726/17/01/015007.
[78]  Kundu, T.; Das, S.; Jata, K.V. Health monitoring of a thermal protection system using Lamb waves. Struct. Health Monit?2009, 8, 25–49.
[79]  Su, Z.; Li, C.; Wang, X.M.; Yu, L.; Zhou, C. Predicting delamination of composite laminates using an imaging approach. Smart Mater. Struct?2009, 18, 074002, doi:10.1088/0964-1726/18/7/074002.
[80]  Ng, C.T.; Veidt, M. A Lamb-wave-based technique for damage detection in composite laminates. Smart Mater. Struct?2009, 18, 074006, doi:10.1088/0964-1726/18/7/074006.
[81]  Michaels, J.E. Detection, Localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart Mater. Struct?2008, 17, 035035, doi:10.1088/0964-1726/17/3/035035.
[82]  Giurgiutiu, V.; Roger, C.A. Modeling of the electro-mechanical (E/M) impedance response of a damaged composite beam. Adaptive Struct. Mater. Syst?1999, 87, 39–46.
[83]  Su, Z.; Ye, L. Fundamental Lamb mode-based delamination detection for CF/EP composite laminates using distributed piezoelectrics. Struct. Health Monit?2004, 3, 43–68, doi:10.1177/1475921704041874.
[84]  Achenbach, J.D.; Sotiropoulos, D.A.; Zhu, H. Characterization of cracks from ultrasonic scattering data. Trans. ASME J. Appl. Mech?1987, 54, 754–760, doi:10.1115/1.3173112.
[85]  Fink, M. Time reversal of ultrasonic field. IEEE Trans. Ultrason. Ferroelectr. Freq. Control?1992, 39, 555–592, doi:10.1109/58.156174. 18267667
[86]  Kuo, J.T.; Dai, T. Kirchhoff elastic wave migration for the case of noncoincident source and receiver. Geophysics?1984, 49, 1223–1238, doi:10.1190/1.1441751.
[87]  Docherty, P. A brief comparison of some Kirchhoff integral formulas for migration and inversion. Geophysics?1991, 56, 1164–1169, doi:10.1190/1.1443136.
[88]  Lin, X.; Yuan, F.G. Damage detection of a plate using migration technique. J. Intelligent Mater. Syst. Struct?2001, 12, 469–482, doi:10.1177/10453890122145276.
[89]  Lin, X.; Yuan, F.G. Experimental study applying a migration technique in structural health monitoring. Struct. Health Monit?2005, 4, 341–353, doi:10.1177/1475921705057973.
[90]  Wang, L.; Yuan, F.G. Damage identification in a composite plate using prestack reverse-time migration technique. Struct. Health Monit?2005, 4, 195–211, doi:10.1177/1475921705055233.
[91]  Wang, X.D.; Huang, G.L. Identification of embedded cracks using back-propagating elastic waves. Inverse Probl?2004, 20, 1393–1409, doi:10.1088/0266-5611/20/5/004.
[92]  Wang, X.D.; Huang, G.L. Study of elastic wave propagation induced by piezoelectric actuators for crack identification. Int. J. Fract?2004, 126, 287–306, doi:10.1023/B:frac.0000026580.54400.8a.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133