The application of novel core-shell nanowires composed of ZnGa2O4/ZnO to improve the sensitivity of NO2 gas sensors is demonstrated in this study. The growth of ZnGa2O4/ZnO core-shell nanowires is performed by reactive evaporation on patterned ZnO:Ga/SiO2/Si templates at 600 °C. This is to form the homogeneous structure of the sensors investigated in this report to assess their sensitivity in terms of NO2 detection. These novel NO2 gas sensors were evaluated at working temperatures of 25 °C and at 250 °C, respectively. The result reveals the ZnGa2O4/ZnO core-shell nanowires present a good linear relationship (R2 > 0.99) between sensitivity and NO2 concentration at both working temperatures. These core-shell nanowire sensors also possess the highest response (<90 s) and recovery (<120 s) values with greater repeatability seen for NO2 sensors at room temperature, unlike traditional sensors that only work effectively at much higher temperatures. The data in this study indicates the newly-developed ZnGa2O4/ZnO core-shell nanowire based sensors are highly promising for industrial applications.
References
[1]
Guidotti, T.L. The higher oxides of nitrogen: inhalation toxicology. Environ. Res?1978, 15, 443–472.
[2]
Richters, A.; Kuraitis, K. Inhalation of NO2 and blood borne cancer cell spread to the lungs. Arch. Environ. Health?1981, 36, 36–39.
[3]
Baratto, C.; Sberveglieri, G.; Onischuk, A.; Caruso, B.; di Stasio, S. Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sens. Actuat. B: Chem?2004, 100, 261–265.
[4]
Nenov, T.G.; Yordanov, S.P. Ceramic Sensors-Technology and Applications; Technomic Publishing: Lancaster, PA, USA, 1996.
[5]
Meixner, H.; Lampe, U. Metal oxide sensors. Sens. Actuat. B:Chem?1996, 33, 198–202.
[6]
Moseley, P.T. Solid state gas sensors. Meas. Sci. Technol?1997, 8, 223–237.
[7]
Lu, G.; Miura, N.; Yamazoe, N. Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2. Sens. Actuat. B: Chem?2000, 65, 125–127.
[8]
Nakata, S.; Shimanoe, K.; Miura, N.; Yamazoe, N. Field effect transistor type NO2 sensor combine with NaNO2 auxiliary phase. Sens. Actuat. B: Chem?1999, 60, 49–56.
[9]
Miura, N.; Ono, M.; Shimanoe, K.; Yamazoe, N. A compact solid-state amperometric sensor for detection of NO2 in ppb range. Sens. Actuat. B: Chem?1998, 49, 101–109.
[10]
Ferro, R.; Rodriguez, J.A.; Bertrand, P. Development and characterization of a sprayed ZnO thin film-based NO2 sensor. Phys. Stat. Sol. (c)?2005, 10, 3754–3757.
[11]
Sergiu, T.; Shishiyanu, T.; Shishiyanu, S.; Lupan, O.I. Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuat. B: Chem?2005, 107, 379–386.
[12]
Steffes, H.; Imawan, C.; Solzbacher, F.; Obermeier, E. Enhancement of NO2 sensing properties of In2O3-based thin film using an Au or Ti surface modification. Sens. Actuat. B: Chem?2001, 78, 106–112.
[13]
Tong, M.; Dai, G.; Wu, Y.; He, X.; Gao, D. WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2. J. Mater. Sci?2001, 36, 2535–2538.
[14]
Lee, D.S.; Lim, J.W.; Lee, S.M.; Huh, J.S.; Lee, D.D. Fabrication and characterization of micro-gas sensor for nitrogen oxide gas detection. Sens. Actuat. B: Chem?2000, 64, 31–36.
[15]
Cantalini, C.; Sun, H.T.; Faccio, M.; Pelino, M.; Santucci, S.; Lozzi, L.; Passacantando, M. NO2 sensitivity of WO3 thin film obtained by highvacuum thermal evaporation. Sens. Actuat. B: Chem?1996, 60, 81–87.
[16]
Lee, D.S.; Han, S.D.; Lee, S.M.; Huh, J.S.; Lee, D.D. The TiO2-adding effects in WO3-based NO2 sensors prepared by coprecipitation and precipitation method. Sens. Actuat. B: Chem?2000, 65, 331–335.
[17]
Lee, D.S.; Han, S.D.; Huh, J.S.; Lee, D.D. Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor. Sens. Actuat. B: Chem?1999, 60, 57–63.
[18]
Chung, Y.K.; Kim, M.H.; Um, W.S.; Lee, H.S.; Song, J.K.; Choi, S.C.; Yi, K.M.; Lee, M.J.; Chung, K.W. Gas sensing properties of WO3 thick film for NO2 gas dependent on process condition. Sens. Actuat. B: Chem?1999, 60, 49–56.
[19]
Giulio, M.D.; Micocci, G.; Serra, A.; Tepore, A. Sputter deposition of tungsten oxide for gas sensing applications. J. Mater. Sci?1998, 9, 317–322.
[20]
Kumar, N.; Dorfman, A.; Hahm, J. Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts. J. Nanosci. Nanotechnol?2005, 5, 1915–1918.
[21]
Hazra, S.K.; Basu, S. Hydrogen sensitivity of ZnO p–n homojunctions. Sens. Actuat. B: Chem?2006, 117, 177–182.
[22]
Wagh, M.S.; Jain, G.H.; Patil, D.R.; Patil, S.A.; Patil, L.A. Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuat. B: Chem?2006, 115, 128–133.
[23]
Wollenstein, J.; Plaza, J.A.; Cane, C.; Min, Y.; Bottner, H.; Tuller, H.L. A novel single chip thin film metal oxide array. Sens. Actuat. B: Chem?2003, 93, 350–355.
[24]
Nakamura, Y.; Zhuang, H.; Kishimoto, A. Enhanced CO and CO2 gas sensitivity of the CuO/ZnO heterocontact made by quenched CuO ceramics. J. Electrochem. Soc?1998, 145, 632–638.
[25]
Liu, C.Y.; Chen, C.F.; Leu, J.P. Fabrication and CO Sensing Properties of Mesostructured ZnO Gas Sensors. J. Electrochem. Soc?2009, 156, J16–J19.
[26]
Hsueh, T.J.; Chen, Y.W.; Chang, S.J.; Wang, S.F.; Hsu, C.L.; Lin, Y. R.; Lin, T.S.; Chen, I.C. ZnO nanowire-based CO sensors prepared at various temperatures. J. Electrochem. Soc?2007, 154, J393–J396.
Hsueh, T.J.; Chang, S.J.; Lin, Y.R.; Chen, I.C.; Hsu, C.L. ZnO nanotube ethanol gas sensor. J. Electrochem. Soc?2008, 155, K152–K155.
[29]
Heo, Y. W.; Varadarajan, V.; Kaufman, M.; Kim, K.; Norton, D.P.; Ren, F.; Fleming, P. H. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett?2002, 81, 3046–3048.
[30]
Wang, J.X.; Sun, X.W.; Yang, Y.; Huang, H.; Lee, Y.C.; Tan, O.K.; Vayssieres, L. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnol?2006, 17, 4995–4998.
[31]
Tseng, Y.K.; Hsu, H.C.; Hsieh, W.F.; Liu, K.S.; Chen, I.C. A Two-step Oxygen Injection Process for Growing ZnO Nanorods. J. Mater. Res?2003, 18, 2837–2844.
[32]
Tseng, Y.K.; Huang, C.J.; Cheng, H.M.; Lin, I.N.; Liu, K.S.; Chen, I.C. Characterization and field emission properties of needle-like zinc oxide nanowhiskers grown vertically on conductive zinc oxide films. Adv. Funct. Mater?2003, 13, 811–814.
[33]
Hsu, C.L.; Chang, S.J.; Hung, H. C.; Lin, Y.R.; Lu, T.H.; Tseng, Y.K.; Chen, I.C. Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4/SiO2/Si templates. J. Vacuum Sci. and Technol. B: Microelectron. Nanometer Struct?2005, 23, 2292–2296.
Hsu, C.L.; Lin, Y.R.; Chang, S.J.; Lu, T.H.; Lin, T.S.; Tsai, S.Y.; Chen, I.C. Influence of the formation of the second phase in ZnO/Ga nanowire systems. J. Electrochem. Soc?2006, 153, G333–G336.
[39]
Yang, S.H. Electrophoretic Prepared ZnGa2O4 Phosphor Film for FED. J. Electrochem. Soc?2003, 150, H250–H253.
[40]
Kang, S.W.; Jeon, B.S.; Yoo, J.S.; Lee, J.D. Optical characteristics of the phosphor screen in field-emission environments. J. Vac. Sci. Technol. B?1997, 15, 520–523.
[41]
Kawazoe, H.; Ueda, K. Transparent conducting oxides based on the spinel structure. J. Am. Ceram. Soc?1999, 82, 3330–3336.
[42]
Lee, Y.E.; Norton, D.P.; Budai, J.D.; Wei, Y. Enhanced ultraviolet photoconductivity in semiconducting ZnGa2O4 thin films. J. Appl. Phys?2001, 90, 3863–3866.
[43]
Hsueh, T.J.; Chang, S.J.; Lin, Y. R.; Tsai, S.Y.; Chen, I.C.; Hsu, C.L. A Novel Method for the Formation of Ladder-like ZnO Nanowires. Cryst. Growth Des?2006, 6, 1282–1284.
Kohl, D. The role of noble metals in the chemistry of solid-state gas sensor. Sens. Actuat. B?1990, 1, 158–165.
[46]
Sahay, P.P. Zinc oxide thin film gas sensor for detection of acetone. J. Mater. Sci?2005, 40, 4383–4385.
[47]
Belysheva, T.V.; Bogovtseva, L.P.; Kazachkov, E.A.; Serebryakova, N.V. Gas- sensingproperties of doped In2O3 films as sensors for NO2 in air. J. Anal. Chem?2003, 58, 583–587.
[48]
Ferro, R.; Rodriguez, J.A.; Bertrand, P. Peculiarities of nitrogen dioxide detection with sprayed undoped and indium-doped zinc oxide thin films. Thin Solid Films?2008, 516, 2225–2230.
[49]
Sadek, A.Z.; Choopun, S.; Wlodarski, W.; Ippolito, S.J.; Kalantar-zadeh, K. Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing. IEEE Sens. J?2007, 7, 919–924.