In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes) and in vitro (in optical microscopes).
References
[1]
Yang, W.; Xiao, X.; Tan, J.; Cai, Q. In situ evaluation of breast cancer cell growth with 3D ATR-FTIR spectroscopy. Vib. Spectros?2009, 49, 64–67.
[2]
Tobin, M.; Chesters, M.; Chalmers, J.; Rutten, F.; Fisher, S.; Symonds, I.; Hitchcock, A.; Allibone, R.; Dias-Gunasekara, S. Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture, using synchrotron radiation. Faraday Discus?2004, 126, 27–39.
[3]
De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc?2007, 38, 1133–1147.
[4]
Liu, Y.; Sonek, G.; Berns, M.; Tromberg, B. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys. J?1996, 71, 2158–2167.
[5]
Puppels, G.; Olminkhof, J.; Segers-Nolten, G.; Otto, C.; de Mul, F.; Greve, J. Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light. Exp. Cell. Res?1991, 95, 361–367.
[6]
Notingher, I.; Verrier, S.; Romanska, H.; Bishop, A.; Polak, J.; Hench, L. In situ characterisation of living cells by Raman spectroscopy. Spectroscopy?2002, 16, 43–51.
[7]
Krafft, C.; Dietzek, B.; Popp, J. Raman and CARS microspectroscopy of cells and tissues. Analyst?2009, 134, 1046–1057.
[8]
Ogawa, M.; Harada, Y.; Yamaoka, Y.; Fujita, K.; Takamatsu, T. Tissue imaging of myocardial infarct regions by a slit-scanning Raman microscope. Proc. SPIE?2009, 7169, 71690H.
[9]
Hamada, K.; Fujita, K.; Smith, N.; Kobayashi, M.; Inouye, Y.; Kawata, S. Raman microscopy for dynamic molecular imaging of living cells. J Biomed. Opt?2008, 13, 044027.
[10]
Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.; Itzkan, I.; Dasari, R.; Feld, M. Single molecule detection using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett?1997, 78, 1667–1670.
[11]
Zavaleta, C.; Smith, B.; Walton, I.; Doering, W.; Davis, G.; Shojaei, B.; Natan, M.; Gambhir, S. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using non-invasive Raman spectroscopy. PNAS?2009, 106, 13511–13516.
[12]
Elfick, A.; Downes, A.; Mouras, R. Development of tip-enhanced optical spectroscopy for biological applications: a review. Anal. Bioanal. Chem?2010, 396, 45–52.
[13]
Downes, A.; Mouras, R.; Mari, M.; Elfick, A. Optimising tip-enhanced optical microscopy. J. Raman Spectrosc?2009, 40, 1355–1360.
[14]
Hartschuh, A.; Qian, H.; Meixner, A.; Anderson, N.; Novotny, L. Nanoscale optical imaging of single-walled carbon nanotubes. J. Luminesc?2006, (119–120), 204–208.
[15]
Downes, A.; Salter, D.; Elfick, A. Heating effects in tip enhanced optical microscopy. Opt. Express?2006, 14, 5216–5222.
[16]
Soudamini, D.; Fu, C.; Kho, K.; Thoniyot, P.; Agarwal, A.; Olivo, M. Fluctuation in surface enhanced Raman scattering intensity due to plasmon related heating effect. Proc. SPIE?2009, 7394, 73940T.
[17]
Maher, R.; Cohen, L.; Le Rub, E.; Etchegoin, P. A study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio. Faraday Discuss?2006, 132, 77–83.
[18]
Kho, K.; Shen, Z.; Lei, Z.; Watt, F.; Soo, K.; Olivo, M. Investigation into a surface plasmon related heating effect in surface enhanced Raman spectroscopy. Anal. Chem?2007, 79, 8870–8882.
[19]
Viets, C.; Hill, W. Laser power effects in SERS spectroscopy at thin metal films. J. Phys. Chem. B?2001, 105, 6330–6336.
[20]
Duncan, M.; Reintjes, J.; Manuccia, T. Scanning coherent anti-Stokes Raman microscope. Opt. Lett?1982, 7, 350–352.
Evans, C.; Potma, E.; Puoris’haag, M.; C?té, D.; Lin, C.; Xie, X. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. PNAS?2005, 102, 16807–16812.
Freudiger, C.; Min, W.; Saar, B.; Lu, S.; Holtom, G.; He, C.; Tsai, J.; Kang, J.; Xie, X. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science?2008, 322, 1857–1861.
[28]
Cheng, J.; Volkmer, A.; Book, L.; Xie, X. Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles. J. Phys. Chem. B?2002, 106, 8493–8498.
[29]
Müller, M.; Schins, J. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J. Phys. Chem. B?2002, 106, 3715–3723.
[30]
Kee, T.; Cicerone, M. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. Opt. Lett?2004, 29, 2701–2703.
[31]
Kano, H.; Hamaguchi, H. In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber. Opt. Express?2006, 14, 2798–2804.
[32]
Slipchenko, M.; Le, T.; Chen, H.; Cheng, J. Compound Raman microscopy for high-speed vibrational imaging and spectral analysis of lipid bodies. J. Phys. Chem. B?2009, 113, 7681–7686.
[33]
Cui, M.; Bachler, B.; Ogilvie, J. Comparing coherent and spontaneous Raman scattering under biological imaging conditions. Opt. Lett?2009, 34, 773–775.
[34]
Harz, M.; R?sch, P.; Popp, J. Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry?2009, 75A, 104–113.
[35]
Nelson, W.; Manoharan, R.; Sperry, J. UV resonance Raman studies of bacteria. Appl. Spectrosc. Rev?1992, 27, 67–124.
[36]
Notingher, I. Raman spectroscopy cell-based biosensors. Sensors?2007, 7, 1343–1358.
[37]
Krafft, C.; Steiner, G.; Beleites, C.; Salzer, R. Disease recognition by infrared and Raman spectroscopy. J. Biophoton?2009, 2, 13–28.
[38]
Keller, M.; Kanter, E.; Mahadevan-Jansen, A. Raman spectroscopy for cancer diagnosis. Spectroscopy?2006, 21, 33–41.
[39]
Segers, V.; Lee, R. Stem-cell therapy for cardiac disease. Nature?2008, 451, 937–942.
[40]
Langer, R. Tissue engineering: Perspectives, challenges and future directions. Tissue Eng?2007, 13, 1–2.
[41]
Downes, A.; Mouras, R.; Elfick, A. Optical spectroscopy for non-invasive monitoring of stem cell differentiation. J. Biomed. Biotech?2010, doi:10.1155/2010/101864.
[42]
Chan, J.; Lieu, D. Label-free biochemical characterization of stem cells using vibrational spectroscopy. J. Biophoton?2009, 2, 656–668.
[43]
Hoffman, L.; Carpenter, M. Characterization and culture of human embryonic stem cells. Nature Biotech?2005, 23, 699–708.
[44]
Nagano, K.; Yoshida, Y.; Isobe, T. Cell surface biomarkers of embryonic stem cells. Proteomics?2008, 8, 4025–4035.
[45]
Carden, A.; Morris, M. Application of vibrational spectroscopy to the study of mineralized tissues (review). J. Biomed. Opt?2000, 5, 259–268.
[46]
Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett?1970, 24, 156–159.
[47]
Xie, C.; Dinno, M.; Li, Y. Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt. Lett?2002, 27, 249–251.
[48]
Creelya, C.; Singha, G.; Petrov, D. Dual wavelength optical tweezers for confocal Raman spectroscopy. Opt. Comm?2005, 245, 465–470.
Holtom, G.; Thrall, B.; Chin, B.; Wiley, H.; Colson, S. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques. Traffic?2001, 2, 781–788.
[53]
Wang, H.; Le, T.; Cheng, J.X. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt. Comm?2008, 281, 1813–1822.
[54]
Wang, H.; Fu, Y; Zickmund, P.; Shi, R.; Cheng, J. Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J?2005, 89, 581–591.
[55]
Le, T.; Langohr, I.; Locker, M.; Sturek, M.; Cheng, J.X. Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J. Biomed. Opt?2007, 12, 054007.
[56]
Mouras, R.; Rischitor, G.; Downes, A.; Salter, D.; Elfick, A. Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging. J. Raman Spectrosc?2010. (accepted).
[57]
Caspers, P.; Lucassen, G.; Puppels, G. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J?2003, 1, 572–580.
[58]
Wright, A.; Poland, S.; Girkin, J.; Freudiger, C.; Evans, C.; Xie, X. Adaptive optics for enhanced signal in CARS microscopy. Opt. Express?2007, 15, 18209–18219.
[59]
Komachi, Y.; Katagiri, T.; Sato, H.; Tashiro, H. Improvement and analysis of a micro Raman probe. Appl. Opt?2009, 48, 1683–1696.
[60]
Buschman, H.; Marple, E.; Wach, M.; Bennett, B.; Bakker Schut, T.; Bruining, H.; Bruschke, A.; van der Laarse, A.; Puppels, G. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal. Chem?2000, 72, 3771–3775.
[61]
Motz, J.; Fitzmaurice, M.; Miller, A.; Gandhi, S.; Haka, A.; Galindo, L.; Dasari, R.; Kramer, J.; Feld, M. In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J. Biomed. Opt?2006, 11, 021003.
[62]
Erckens, R.; Jongsma, F.; Wicksted, J.; Hendrikse, F.; March, W.; Motamedi, M. Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med. Sci?2001, 16, 236–252.
[63]
Glenn, J.; Renwick Beattie, J.; Barrett, L.; Frizzell, N.; Thorpe, S.; Boulton, M.; McGarvey, J.; Stitt, A. Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging. FASEB J?2007, 21, 3542–3552.
[64]
Qian, X.; Peng, X.; Ansari, D.; Yin-Goen, O.; Chen, G.; Shin, D.; Yang, L.; Young, A.; Wang, M.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotech?2008, 26, 83–90.
[65]
Sharaf, M.; Illman, D.; Kowalski, B. Chemometrics; John Wiley & Sons: New York, NY, USA, 1986; Volume 82.
[66]
Santos, R.; Sidaoui, H.; Silveira, L.; Pasqualucci, C.; Pacheco, M. Classification system of Raman spectra using cluster analysis to diagnose coronary artery lesions. Instr. Sci. Technol?2009, 37, 327–344.
[67]
Hartigan, J. Clustering Algorithms; John Wiley & Sons: New York, NY, USA, 1975.
[68]
Hartigan, J.; Wong, M.J. Algorithm AS 136: A k-means clustering algorithm. Royal Stat. Soc. C?1979, 28, 100–108.
[69]
Ward, J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc?1963, 58, 236–244.