全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Whispering Gallery Modes in Standard Optical Fibres for Fibre Profiling Measurements and Sensing of Unlabelled Chemical Species

DOI: 10.3390/s100301765

Keywords: chemical sensor, whispering gallery mode, optical fibre

Full-Text   Cite this paper   Add to My Lib

Abstract:

Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperature, and its measurement capabilities are demonstrated through application to high-precision fibre geometry profiling and the detection of unlabelled biochemical species. The prototype sensor is capable of detecting unlabelled biomolecular species in attomole quantities.

References

[1]  P?llinger, M; O’Shea, D.; Warken, F.; Rauschenbeutel, A. Ultrahigh-Q tunable whispering-gallery-mode resonator. Phys. Rev. Lett?2009, 103. Art No. 053901. 20366270
[2]  Symes, R.; Sayer, R.M.; Reid, J.P. Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects. Phys. Chem. Chem. Phys?2004, 6, 474–487, doi:10.1039/b313370b.
[3]  Birks, T.A.; Knight, J.C.; Dimmick, T.E. High resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Phot. Tech. Lett?2000, 12, 182–183, doi:10.1109/68.823510.
[4]  Warken, F.; Giessen, H. Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy. Opt. Lett?2004, 29, 1727–1729, doi:10.1364/OL.29.001727. 15352351
[5]  Poon, A.; Chang, R. Measurement of fiber-cladding diameter uniformity by use of whispering gallery modes: nanometer resolution in diameter variations along millimeter to centimeter lengths. Opt. Lett?2001, 26, 1867–1869, doi:10.1364/OL.26.001867. 18059720
[6]  Huston, A.L.; Eversole, J.D. Strain sensitive elastic scattering from cylinders. Opt. Lett?1993, 18, 1104–1106, doi:10.1364/OL.18.001104. 19823304
[7]  Martin, L.P.; Suter, J.J.; Rosen, M. Sapphire resonator transducer accelerometer for space gravity gradiometry. J. Phys. D?1994, 27, 875–880, doi:10.1088/0022-3727/27/4/031.
[8]  Laine, J.P.; Tapalian, C.; Little, B.; Haus, H. Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler. Sens. Actuat. A?2001, 93, 1–7, doi:10.1016/S0924-4247(01)00636-7.
[9]  Nam, S.H.; Yin, S.H. High-temperature sensing using whispering gallery mode resonance in bent optical fibres. IEEE Phot. Tech. Lett?2005, 17, 2391–2393, doi:10.1109/LPT.2005.857988.
[10]  Guan, G.; Arnold, S.; Otugen, M.V. Temperature measurements using a microoptical sensor based on whispering gallery modes. AIAA J?2006, 44, 2385–2389, doi:10.2514/1.20910.
[11]  Strouse, G.F. Sapphire whispering gallery thermometer. Int. J. Thermophys?2007, 28, 1812–1821, doi:10.1007/s10765-007-0265-0.
[12]  Chu, S.T.; Pan, W.; Sato, S.; Kaneko, T.; Little, B.; Kokubun, Y. Wavelength trimming of a micoring resonator filter by means of a UV sensitive polymer overlay. IEEE Phot. Tech. Lett?1999, 11, 688–690, doi:10.1109/68.766786.
[13]  Blom, F.C.; van Dijk, D.R.; Hoekstra, H.J.W.M.; Driessen, A.; Popma, T.J.A. Experimental study of integrated-optics microcavity resonators: Towards an all-optical switching device. App. Phys. Lett?1997, 71, 747–749, doi:10.1063/1.119633.
[14]  Vassiliev, V.V.; Velichansky, V.L.; Ilchenko, V.S.; Gorodetsky, M.L.; Hollberg, L.; Yarovitsky, A.V. Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Comm?1998, 158, 305–312, doi:10.1016/S0030-4018(98)00578-1.
[15]  Tzeng, H.M.; Wall, K.F.; Long, M.B.; Chang, R.K. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. Opt. Lett?1984, 9, 499–501, doi:10.1364/OL.9.000499. 19721646
[16]  Vollmer, F; Arnold, S. Whispering-gallery-mode biosensing: label free detection down to single molecules. Nature Methods?2008, 5, 591–596, doi:10.1038/nmeth.1221. 18587317
[17]  Epstein, J.R.; Leung, A.P.K.; Lee, K.H.; Walt, D.R. High-density, microsphere-based fiber optic DNA microarrays. Bios. Bioelectr?2003, 18, 541–546, doi:10.1016/S0956-5663(03)00021-6.
[18]  Vollmer, F.; Arnold, S.; Braun, D.; Teraoka, I.; Libchaber, A. Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities. Biophys. J?2003, 85, 1974–1979, doi:10.1016/S0006-3495(03)74625-6. 12944310
[19]  Arnold, S.; Khoshsima, M.; Teraoka, I; Holler, S.; Vollmer, F. Shift of whispering gallery modes in microspheres by protein adsorption. Opt. Lett?2003, 28, 272–274, doi:10.1364/OL.28.000272. 12653369
[20]  Lutti, J.; Langbein, W.; Borri, P. A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres. App. Phys. Lett?2008, 93, 151103-1–151103-3.
[21]  Westcott, S.L.; Zhang, J.; Shetton, R.K.; Bruce, N.M.K.; Gupta, S.; Keen, S.L.; Tillman, J.W.; Wald, L.B.; Strecker, B.N.; Rosenberger, A.T.; Davidson, R.R.; Chen, W.; Donovan, K.G.; Hryniewicz, J.V. Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator. Rev. Sci. Instrum?2008, 79, 033106, doi:10.1063/1.2894307. 18376996
[22]  Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J. Label-free, single-molecule detection with optical microcavities. Science?2007, 317, 783–787, doi:10.1126/science.1145002. 17615303
[23]  Farca, G.; Shopova, S.I.; Rosenberger, A.T. Cavity-enhanced laser absorption spectroscopy using microresonator whispering gallery modes. Opt. Express?2007, 15, 17443–17448, doi:10.1364/OE.15.017443. 19551038
[24]  Arnold, S.; Shapova, S.I.; Holler, S. Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. Opt. Exp?2010, 18, 281–287, doi:10.1364/OE.18.000281.
[25]  Blair, S; Chen, Y. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt?2001, 40, 570–582, doi:10.1364/AO.40.000570. 18357033
[26]  Ahmad, M.; Hench, L.L. Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Bios. Bioelectr?2004, 20, 1312–1319.
[27]  Gorodestsky, K.L.; Ilchenko, V.S. High-Q optical whispering-gallery-mode microresonators - precession approach for spherical mode analysis and emission patterns with prism couplers. Opt. Comm?1996, 113, 133–143.
[28]  Matsko, A.B.; Savchenkov, A.A.; Strekalov, D.; Ilchenko, V.S.; Maleki, L. IPN Progress Report?2005, 42–62.
[29]  White, I.M.; Fan, X. On the performance quantification of resonant refractive index sensors. Opt. Express?2008, 16, 1020–1028, doi:10.1364/OE.16.001020. 18542175
[30]  RSoft Inc. RSoft Fullwave FDTD code Available online: http://www.rsoftdesign.com/ (accessed on 22 December 2009).
[31]  Zamora, V.; Diez, A.; Andres, M.V.; Gimeno, B. Refractometric sensor based on whispering gallery modes of thin capillaries. Opt. Express?2007, 15, 12011–12016, doi:10.1364/OE.15.012011. 19547565
[32]  Little, B.E. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave Tech?1999, 17, 704–715, doi:10.1109/50.754802.
[33]  Humphrey, M.J.; Elijah Dale, A.T.; Rosenberger, D.K. Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere. Bandy Opt. Commun?2007, 271, 124–131, doi:10.1016/j.optcom.2006.10.018.
[34]  White, I.M.; Zhu, H.Y.; Suter, J.D.; Hanumegowda, N.M; Oveys, H.; Zourob, M.; Fan, X. Refractomeric sensors for lab-on-a-chip based optical ring resonators. IEEE Sensors J?2007, 7, 28–35, doi:10.1109/JSEN.2006.887927.
[35]  Baehr-Jones, T.; Hochberg, M.; Walker, C; Scherer, A. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett?2005, 86. Art No. 081101.
[36]  Sheuer, J.; Green, W.M.J.; DeRose, G.A.; Yariv, A. InGaAsP annular Bragg lasers: Theory, applications and modal properties. IEEE J. Sel. Top. Quant. El?2005, 11, 476–484, doi:10.1109/JSTQE.2005.845614.
[37]  Krioukov, E.; Greve, J.; Otto, C. Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens. Actuat. B?2003, 90, 58–67, doi:10.1016/S0925-4005(03)00022-4.
[38]  Ling, T.; Song, Q.; Wang, X.; Li, L.; Xu, L.; Wang, W. Whispering gallery modes from dye-doped organic/inorganic hybrid micro-ring cavity. Proc. SPIE?2002, 4918, 207–210.
[39]  Kamikawachi, R.C.; Abe, I.; Paterno, A.S.; Kalinowski, H.J.; Muller, M.; Pinto, J.L.; Fabris, J.L. Determination of thermo-optical coefficients in liquids with fiber Bragg grating refractometer. Opt. Comm?2008, 281, 621–625, doi:10.1016/j.optcom.2007.10.023.
[40]  Tan, W.; Shi, L.; Chen, X.F. Modeling of an optical sensor based on whispering gallery modes (WGMs) on the surface guiding layer of glass filaments. Sensors?2008, 8, 6761–6768, doi:10.3390/s8106761.
[41]  Lapin, N.A.; Chabal, Y.J. Infrared characterisation of biotinylated silicon oxide surfaces, surface stability, and specific attachment of streptavidin. J. Phys. Chem. B?2009, 113, 8776–8783, doi:10.1021/jp809096m. 19489542

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133