In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor’s output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one’s life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with “Web 2.0” content collected by millions of other individuals.
References
[1]
Hodges, S.; Williams, L.; Berry, E.; Izadi, S.; Srinivasan, J.; Butler, A.; Smyth, G.; Kapur, N.; Wood, K. SenseCam: A retrospective memory aid. Proceedings of the 8th International Conference on Ubiquitous Computing, Orange County, CA, USA, September 17–21, 2006; Springer: Berlin, Heidelberg, Germany, 2006; 4602, pp. 177–193.
[2]
Doherty, A.R.; Smeaton, A.F. Automatically segmenting lifelog data into events. Proceedings of 9th International Workshop on Image Analysis for Multimedia Interactive Services, Klagenfurt, Austria, May 7–9, 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 20–23.
[3]
Zacks, J.M.; Speer, N.K.; Vettel, J.M.; Jacoby, L.L. Event understanding and memory in healthy aging and dementia of the alzheimer type. Psychol. Aging?2006, 21, 466–482.
[4]
Baddeley, A. Your Memory: A User’s Guide; Carlton Books: New York, NY, USA, 2004.
[5]
Berry, E.; Hampshire, A.; Rowe, J.; Hodges, S.; Kapur, N.; Watson, P.; Smyth, G.B.G.; Wood, K.; Owen, A.M. The neural basis of effective memory therapy in a patient with limbic encephalitis. J. Neurol. Neurosurg. Psychiatry?2009, 80, 582–601.
[6]
Bell, G.; Gemmell, J. A digital life. Scientific American Magazine?2007.
[7]
Lim, J.H.; Li, Y.; You, Y.; Chevallet, J.P. Scene recognition with camera phones for tourist information access. Proceedings of International Conference on Multimedia and Expo, Beijing, China, July 2–5, 2007; pp. 100–103.
[8]
O’Hare, N.; Gurrin, C.; Jones, G.J.; Smeaton, A.F. Combination of content analysis and context features for digital photograph retrieval. Proceedings of 2nd IEE European Workshop on the Integration of Knowledge, Semantic and Digital Media Technologies, London, UK, November 29–December 1, 2005; IEEE Computer Society: Washington, DC, USA, 2005; pp. 323–328.
[9]
Nini, B.; Batouche, M. Virtualized real object integration and manipulation in an augmented scene. Proceedings of 11th International Conference on Computer Analysis of Images and Patterns, Versailles, France, September 5–8, 2005; Springer: Berlin/Heidelberg, Germany, 2005; 3691, pp. 248–255.
[10]
O’Hare, N.; Smeaton, A.F. Context-aware person identification in personal photo collections. IEEE Trans. Multimedia?2009, 11, 220–228.
[11]
Kawamura, T.; Fukuhara, T.; Takeda, H.; Kono, Y.; Kidode, M. Ubiquitous memories: A memory externalization system using physical objects. Pers. Ubiquit. Comput?2007, 11, 287–298.
[12]
Kennedy, L.S.; Naaman, M. Generating diverse and representative image search results for landmarks. Proceeding of the 17th International Conference on World Wide Web, Beijing, China, April 21–25, 2008; ACM: New York, NY, USA, 2008; pp. 297–306.
[13]
van Zwol, R. Flickr: Who is looking? Proceedings of the IEEE /WIC/ACM International Conference on Web Intelligence, Silicon Valley, CA, USA, November 2–5, 2007; IEEE Computer Society: Washington, DC, USA, 2007; pp. 184–190.
[14]
Gill, P.; Arlitt, M.; Li, Z.; Mahanti, A. YouTube traffic characterization: a view from the edge. Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, October 24–26, 2007; ACM, 2007; pp. 15–28.
[15]
Liu, T.; Rosenberg, C.; Rowley, H.A. Clustering billions of images with large scale nearest neighbor Search. Proceedings of the 8th IEEE Workshop on Applications of Computer Vision, Austin, TX, USA, February; IEEE Computer Society: Washington, DC, USA; pp. 20–21.
[16]
Nov, O.; Naaman, M.; Ye, C. What drives content tagging: the case of photos on Flickr. Proceeding of the 26th Annual SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, April 5–10, 2008; ACM: New York, NY, USA, 2008; pp. 1097–1100.
[17]
Miller, G.A.; Beckwith, R.; Fellbaum, C.; Gross, D.; Miller, K.J. Introduction to WordNet: An on-line lexical database. Int. J. Lexicography?2004, 3, 235–244.
[18]
Rattenbury, T.; Good, N.; Naaman, M. Towards automatic extraction of event and place semantics from Flickr tags. Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, July 23–28, 2007; ACM: New York, NY, USA, 2007; pp. 103–110.
[19]
Salembier, P.; Sikora, T. Introduction to MPEG-7: Multimedia Content Description Interface; John Wiley & Sons: New York, NY, USA, 2002.
[20]
Berendt, B.; Hanser, C. Tags are not metadata, but “just more content”—to some people. Proceedings of the International Conference onWeblogs and Social Media (ICWSM 2007), Boulder, CO, USA, March 26–28, 2007.
[21]
Schmitz, P. Inducing ontology from Flickr tags. Proceedings of Collaborative Web Tagging Workshop (WWW2006), Edinburgh, Scotland, UK, May 22–26, 2006; IEEE Computer Society: Washington, DC, USA, 2006.
[22]
le Cessie, S.; van Houwelingen, J. Ridge estimators in logistic regression. Appl. Stat?1992, 41, 191–201.
[23]
John, G.H.; Langley, P. Estimating continuous distributions in bayesian classifiers. Proceedings of 11th Conference on Uncertainty in Artificial Intelligence, Montreal, Quebec, Canada, August 18–20, 1995; Morgan Kaufmann: San Mateo, CA, USA, 1995; pp. 338–345.
[24]
Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann: San Mateo, CA, USA, 1993.
[25]
Keerthi, S.; Shevade, S.; Bhattacharyya, C.; Murthy, K. Improvements to platt’s SMO algorithm for SVM classifier design. Neur. Comput?2001, 13, 637–649.
[26]
Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis?2004, 60, 91–110.
[27]
Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded up robust features. Proceedings of the 9th European Conference on Computer Vision (ECCV’06), Graz, Austria, May 7–13, 2006; pp. 404–407.
[28]
Smeaton, A.F.; Over, P.; Kraaij., W. High-level feature detection from video in TRECVid: A 5-year retrospective of achievements. In Multimedia Content Analysis; Springer: Berlin, Germany, 2009; pp. 1–24.
[29]
Snoek, C.G.M.; van de Sande, K.E.A.; de Rooij, O.; Huurnink, B.; Uijlings, J.R.R.; van Liempt, M.; Bugalho, M.; Trancoso, I.; Yan, F.; Tahir, M.A.; Mikolajczyk, K.; Kittler, J.; de Rijke, M.; Geusebroek, J.M.; Gevers, T.; Worring, M.; Smeulders, A.W.M.; Koelma, D.C. The mediamill TRECVID 2009 semantic video search engine. Available online: http://www-nlpir.nist.gov/projects/tvpubs/tv9.papers/mediamill.pdf (accessed on 20 February 2010).
[30]
Hauptmann, A.; Yan, R.; Lin, W.H. How many high-level concepts will fill the semantic gap in news video retrieval? Proceedings of the 6th ACM International Conference on Image and Video Retrieval, Amsterdam, The Netherlands, July 9–11, 2007; ACM: New York, NY, USA, 2007; pp. 627–634.