全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Near-Infrared Fluorescence Detection of Acetylcholine in Aqueous Solution Using a Complex of Rhodamine 800 and p-Sulfonato-calix[8]arene

DOI: 10.3390/s100302438

Keywords: near-infrared fluorescence, fluorescence detection, acetylcholine, dopamine, rhodamine 800, p-sulfonatocalixarene

Full-Text   Cite this paper   Add to My Lib

Abstract:

The complexing properties of p-sulfonatocalix[n]arenes (n = 4: S[4], n = 6: S[6], and n = 8: S[8]) for rhodamine 800 (Rh800) and indocyanine green (ICG) were examined to develop a near-infrared (NIR) fluorescence detection method for acetylcholine (ACh). We found that Rh800 (as a cation) forms an inclusion complex with S[n], while ICG (as a twitter ion) have no binding ability for S[n]. The binding ability of Rh800 to S[n] decreased in the order of S[8] > S[6] >> S[4]. By the formation of the complex between Rh800 and S[8], fluorescence intensity of the Rh800 was significantly decreased. From the fluorescence titration of Rh800 by S[8], stoichiometry of the Rh800-S[8] complex was determined to be 1:1 with a dissociation constant of 2.2 mM in PBS. The addition of ACh to the aqueous solution of the Rh800-S[8] complex caused a fluorescence increase of Rh800, resulting from a competitive replacement of Rh800 by ACh in the complex. From the fluorescence change by the competitive fluorophore replacement, stoichiometry of the Rh800-ACh complex was found to be 1:1 with a dissociation constant of 1.7 mM. The effects of other neurotransmitters on the fluorescence spectra of the Rh800-S[8] complex were examined for dopamine, GABA, glycine, and L-asparatic acid. Among the neurotransmitters examined, fluorescence response of the Rh800-S[8] complex was highly specific to ACh. Rh800-S[8] complexes can be used as a NIR fluorescent probe for the detection of ACh (5 × 10-4?10-3 M) in PBS buffer (pH = 7.2).

References

[1]  Augustine, G.J.; Fritzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; MaNamara, J.O.; Mooney, R.D.; Platt, M.L.; Purves, D.; Simon, S.A.; White, L.E.; Williams, S.M.; Winstein, S.; Henderson, R.B. NeuroScienec; Purves, D., Augustine, G.J., Fritzpatrick, D., Hall, W.C., LaMantia, A.-S., MaNamara, J.O., White, L.E., Eds.; Sinauer: Sunderland, MA, USA, 2008. Chapter 6; pp. 119–126.
[2]  Albert, B.; Johnson, A.; Lewis, J.; Laff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 5th ed ed.; Garland Science: New York, NY, USA, 2008. Chapter 15; p. 882.
[3]  Honda, K.; Kunihara, M.; Maruyama, Y. Determination of picomole amounts of choline and acetylcholine in blood by gas chromatography-mass spectrometry equipped with a newly improved pyrolyzer. J. Chromatogr. A?1982, 239, 335–342.
[4]  Honda, K.; Miyaguchi, K.; Nishino, H.; Tanaka, H.; Yao, T.; Imai, K. High-performance liquid chromatography followed by chemiluminescence detection of acetylcholine and choline utilizing immobilized enzymes. Anal. Biochem?1986, 153, 50–53.
[5]  Ricny, J.; Coupek, J.; Tucek, S. Determination of acetylcholine and choline by flow injection with immobilized enzymes and fluorometric or luminometric detection. Anal. Biochem?1989, 170, 221–227.
[6]  Hestrin, S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol. Chem.?1949, 180, 249–261.
[7]  Schuberth, J.; Sparf, B.; Sundwall, A. A technique for the study of acetylcholine turnover in mouse brain in vivo. J. Neurochem?1969, 16, 695–700.
[8]  Feigenson, M.E.; Saeleus, J.K. An enzyme assay for acetylcholine. Biochem. Pharmacol?1969, 18, 1479–1486.
[9]  Snejdarkova, M.; Svobodova, L.; Evtugyn, G.; Budnikov, H.; Karyakin, A.; Nikolelis, D.P.; Hianik, T. Acetylcholineesterase sensors based on gold electrodes modified with dendrimer and polyaniline A comparative research. Anal. Chem. Acta?2004, 514, 79–88.
[10]  Shibli, S.M.A.; Beenakumari, K.S.; Suma, N.D. Nano nickel oxide/nickel incorporated nickel composite coating for sensing and estimation of acetylcholine. Biosens. Bioelectron?2006, 22, 633–638.
[11]  Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed. ed.; Springer: New York, NY, USA, 2006. Chapter 23; pp. 623–674.
[12]  Weissleder, R.A. A clearer vision for in vivo imaging. Nat. Biotechnol?2001, 19, 316–317.
[13]  Liu, H.; Beauvoit, B.; Kimura, M.; Chance, B. Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. J. Biomed. Opt?1996, 1, 200–211.
[14]  Lim, Y.T.; Kim, S.; Nakayama, A.; Stott, N.E.; Bawendi, M.G.; Frangioni, J.V. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging?2003, 2, 50–64.
[15]  Shinkai, S.; Araki, K.; Manabe, O. NMR determination of association constants for calixarene complexes. Evidence for the formation of a 1:2 complex with calix[8]arene. J. Am. Chem. Soc?1988, 110, 7214–7215.
[16]  Shinkai, S.; Araki, K.; Matsuda, T.; Nishiyama, N.; Ikeda, H.; Takasu, I.; Iwamoto, M. NMR and crystallographic studies of a p-sulfonatocalix[4]arene-guest complex. J. Am. Chem. Soc?1990, 112, 9053–9058.
[17]  Arena, G.; Casnati, A.; Contino, A.; Gulino, F.G.; Sciotto, D.; Ungaro, R. Entropic origin of the sulfonate groups’ electrostatic assistance in the complexation of quaternary ammonium cations by water soluble calix[4]arenes. J. Chem. Soc. Perkin Trans?2000, 2, 419–423.
[18]  Aruduini, A.; Demuru, D.; Pochini, A.; Secchi, A. Recognition of quaternary ammonium cations by calix[4]arene derivatives supported on gold nanoparticles. Chem. Commun?2005, 5, 645–647.
[19]  Wang, L.-H.; Guo, D.-S.; Chen, Y.; Liu, Y. Thermodynamics of interactions between organic ammonium ions and sulfonatocalixarenes. Thermoch. Acta?2006, 443, 132–135.
[20]  Lehn, J.-M.; Meric, R.; Vigneron, J.-P.; Cerario, M.; Guilhem, J.; Pascard, C.; Asfari, Z.; Vicens, J. Binding of acetylcholine and other quaternary ammonium cations by sulfonated calixarenes. Crystal structure of a [choline-tetrasulfonated calix[4]arene] complex. Supramol. Chem?1995, 5, 97–103.
[21]  Koh, K.N.; Araki, K.; Ikeda, A.; Otsuka, H.; Shinkai, S. Reinvestigation of calixarene-based artificial-signaling acetylcholine receptors useful in neutral aqueous (water-methanol) solution. J. Am. Chem. Soc?1996, 118, 755–758.
[22]  Zhang, Y.-J.; Cao, W.-X.; Xu, J. Interaction of sulfonated calix[n]arenes with rhodamine B and its application to determine acetylcholine in a real neutral aqueous medium. Chin. J. Chem?2002, 20, 322–326.
[23]  Jin, T. A new fluorometric method for the detection of the neurotransmitter acetylcholine in water using a dansylcholine complex with p-sulfonated calix[8]arene. J. Inclusion Phenom. Macrocyclic Chem?2003, 45, 195–201.
[24]  Wang, L.-H.; Guo, D.-S.; Chen, Y.; Liu, Y. Thermodynamics of interactions between organic ammonium ions and sulfonatocalixarenes. Thermoch. Acta?2006, 443, 132–135.
[25]  Bakirci, H.; Nau, W.M. Fluorescence regenerations as a signaling principle for choline and carnitine binding: a refined supramolecular sensor system based on a fluorescent azoalkane. Adv. Funct. Mater?2006, 16, 237–242.
[26]  Korbakov, N.; Timmerman, P.; Lidich, N.; Urbach, B.; Sa’ar, A.; Yitzchaik, S. Acetylcholine detection at micromolar concentrations with the use of an artificial receptor-based fluorescence switch. Langmuir?2008, 24, 2580–2587.
[27]  Jin, T.; Fujii, F.; Ooi, Y. Interfacial recognition of acetylcholine by an amphiphilc p-sulfonatocalix[8]arene derivative incorporated into dimyristoyl phosphatidylcholine vesicles. Sensors?2008, 8, 6777–6790.
[28]  Rizvi, N.H.; Opalinska, M.M.; French, P.M.W.; Taylor, J.R. A cw rhodamine 800 dye laser passively mode-locked with neocyanine. Opt. Commun?1990, 80, 57–59.
[29]  Jilkina, O.; Kong, H.-J.; Hwi, L.; Kuzio, B.; Xiang, B.; Manley, D.; Jackson, M; Kupriyanov, V.V. Interaction of a mitochondrial membrane potential-sensitive dye, rhodamine 800, with rat mitochondria, cells, and perfused hearts. J. biomed. Opt?2006, 11, 014009(1)–014009(9).
[30]  Benson, R.C.; Kues, H.A. Fluorescence properties of indocyanine green as related to angiography. Phys. Med. Biol?1978, 23, 159–163.
[31]  Saxena, V.; Sadoqi, M.; Shao, J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci?2003, 92, 2090–2097.
[32]  Lee, H.; Berezin, M.Y.; Henary, M.; Strekowski, L.; Achiefu, S. Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures. J. Photochem. Photobiol. A: Chem?2008, 200, 438–444.
[33]  Abugo, O.O.; Nair, R.; Lakowicz, J.R. Fluorescence properties of rhodamine 800 in whole blood and plazma. Anal. Biochem?2000, 279, 142–150.
[34]  Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed ed.; Springer: New York, NY, USA, 2006. Chapter 8; pp. 278–282.
[35]  Augustine, G.J.; Fritzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; MaNamara, J.O.; Mooney, R.D.; Platt, M.L.; Purves, D.; Simon, S.A.; White, L.E.; Williams, S.M.; Winstein, S.; Henderson, R.B. NeuroScienec; Purves, D., Augustine, G.J., Fritzpatrick, D., Hall, W.C., LaMantia, A.-S., MaNamara, J.O., White, L.E., Eds.; Sinauer: Sunderland, MA, USA, 2008. Chapter 6; pp. 137–138.
[36]  Augustine, G.J.; Fritzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; MaNamara, J.O.; Mooney, R.D.; Platt, M.L.; Purves, D.; Simon, S.A.; White, L.E.; Williams, S.M.; Winstein, S.; Henderson, R.B. NeuroScienec; Purves, D., Augustine, G.J., Fritzpatrick, D., Hall, W.C., LaMantia, A.-S., MaNamara, J.O., White, L.E., Eds.; Sinauer: Sunderland, MA, USA, 2008. Chapter 6.
[37]  Barnes, N.M.; Costall, B.; Fell, A.F.; Naylor, R. An HPLC assay procedure of sensitivity and stability for measurement of acetylcholine and choline in neuronal tissue. J. Pharm. Pharmacol?1987, 39, 727–731.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133