Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.
References
[1]
Harmon, R.S.; Remus, J.; McMillan, N.J.; McManus, C.; Collins, L.; Gottfried, J.L.; DeLucia, F.C.; Miziolek, A.W. LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Appl. Geochem?2009, 24, 1125–1141, doi:10.1016/j.apgeochem.2009.02.009.
[2]
Gondal, M.A.; Hussain, T.; Yamani, Z.H.; Baig, M.A. On-line monitoring of remediation process of chromium polluted soil using LIBS. J. Hazard. Mater?2009, 163, 1265–1271, doi:10.1016/j.jhazmat.2008.07.127. 18809249
[3]
Hussain, T.; Gondal, M.A. Monitoring and assessment of toxic metals in gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy. Environ. Monit. Assess?2008, 136, 391–399. 17406995
[4]
Kim, T.; Specht, Z.G.; Vary, P.S.; Lin, C.T. Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy. J. Phys. Chem. B?2004, 108, 5477–5482, doi:10.1021/jp031269i.
[5]
Rodriguez-Celis, E.M.; Gornushkin, I.B.; Heitmann, U.M.; Almirall, J.R.; Smith, B.W.; Winefordner, J.D.; Omenetto, N. Laser induced breakdown spectroscopy as a tool for discrimination of glass for forensic applications. Anal. Bioanal. Chem?2008, 391, 1961–1968, doi:10.1007/s00216-008-2104-y. 18437364
[6]
Baudelet, M.; Guyon, L.; Yu, J.; Wolf, J.P.; Amodeo, T.; Frejafon, E.; Laloi, P. Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime. J. Appl. Phys?2006, 99, 084701, doi:10.1063/1.2187107.
[7]
Suliyanti, M.M.; Sardy, S.; Kusnowo, A.; Pardede, M.; Hedwig, R.; Kurniawan, K.H.; Lie, T.J.; Kurniawan, D.P.; Kagawa, K. Preliminary analysis of c and H in a “Sangiran” Fossil using laser-induced plasma at reduced pressure. J. Appl. Phys?2005, 98, 093307, doi:10.1063/1.2121930.
[8]
Osticioli, I.; Wolf, M.; Anglos, D. An optimization of parameters for application of a laser-induced breakdown spectroscopy microprobe for the analysis of works of art. Appl. Spectrosc?2008, 62, 1242–1249, doi:10.1366/000370208786401572. 19007467
[9]
Aragon, C.; Aguilera, J.A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrosc. Acta Pt. B-Atom. Spectr?2008, 63, 893–916, doi:10.1016/j.sab.2008.05.010.
[10]
Capitelli, M.; Casavola, A.; Colonna, G.; De Giacomo, A. Laser-induced plasma expansion: Theoretical and experimental aspects. Spectrosc. Acta Pt. B-Atom. Spectr?2004, 59, 271–289, doi:10.1016/j.sab.2003.12.017.
[11]
Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; Wiley: West Sussex, UK, 2006.
[12]
Cremers, D.A.; Radziemski, L.J. Laser plasmas for chemical analysis. In Laser Spectroscopy and Its Applications; Radziemski, L.J., Solarz, R.W., Paisner, J.A., Eds.; Marcel Dekker: New York, NY, USA, 1987. Chapter 5..
[13]
Lee, Y.-I.; Song, K.; Sneddon, J. Laser induced plasmas for analytical atomic spectroscopy. In Lasers in Analytical Atomic Spectroscopy; Sneddon, J., Thiem, T.L., Lee, Y.-I., Eds.; Wiley-VCH: New York, NY, USA, 1997. Chapter 5..
[14]
Knight, A.K.; Scherbarth, N.L.; Cremers, D.A.; Ferris, M.J. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc?2000, 54, 331–340, doi:10.1366/0003702001949591.
[15]
Salle, B.; Cremers, D.A.; Maurice, S.; Wiens, R.C. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples. Spectrosc. Acta Pt. B-Atom. Spectr?2005, 60, 479–490, doi:10.1016/j.sab.2005.02.009.
[16]
Shu, R.; Qi, H.X.; Lu, G.; Ma, D.M.; He, Z.P.; Xue, Y.Q. Laser-induced breakdown spectroscopy based detection of lunar soil simulants for moon exploration. Chin. Opt. Lett?2007, 5, 58–59.
[17]
Wiens, R.C.; Maurice, S. Chemcam’s cost a drop in the Mars bucket. Science?2008, 322, 1464–1464. 19056958
[18]
Arp, Z.A.; Cremers, D.A.; Wiens, R.C.; Wayne, D.M.; Salle, B.A.; Maurice, S. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: Application to Mars polar exploration. Appl. Spectrosc?2004, 58, 897–909, doi:10.1366/0003702041655377. 15324495
[19]
Brennetot, R.; Lacour, J.L.; Vors, E.; Rivoallan, A.; Vailhen, D.; Maurice, S. Mars analysis by laser-induced breakdown spectroscopy (MALIS): Influence of Mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of doehlert designs. Appl. Spectrosc?2003, 57, 744–752, doi:10.1366/000370203322102816. 14658651
[20]
Colao, F.; Fantoni, R.; Lazic, V.; Paolini, A. LIBS application for analyses of martian crust analogues: Search for the optimal experimental parameters in air and CO2 atmosphere. Appl. Phys. A-Mater?2004, 79, 143–152, doi:10.1007/s00339-003-2262-x.
[21]
Colao, F.; Fantoni, R.; Lazic, V.; Paolini, A.; Fabbri, F.; Ori, G.G.; Marinangeli, L.; Baliva, A. Investigation of LIBS feasibility for in situ planetary exploration: An analysis on martian rock analogues. Planet. Space Sci?2004, 52, 117–123, doi:10.1016/j.pss.2003.08.012.
[22]
Salle, B.; Cremers, D.A.; Maurice, S.; Wiens, R.C.; Fichet, P. Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions. Spectrosc. Acta Pt. B-Atom. Spectr?2005, 60, 805–815, doi:10.1016/j.sab.2005.05.007.
[23]
Salle, B.; Lacour, J.L.; Mauchien, P.; Fichet, P.; Maurice, S.; Manhes, G. Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated martian atmosphere. Spectrosc. Acta Pt. B-Atom. Spectr?2006, 61, 301–313, doi:10.1016/j.sab.2006.02.003.
[24]
Salle, B.; Lacour, J.L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers, D.A.; Wiens, R.C. Laser-induced breakdown spectroscopy for Mars surface analysis: Capabilities at stand-off distances and detection of chlorine and sulfur elements. Spectrosc. Acta Pt. B-Atom. Spectr?2004, 59, 1413–1422, doi:10.1016/j.sab.2004.06.006.
[25]
Radziemski, L.; Cremers, D.A.; Benelli, K.; Khoo, C.; Harris, R.D. Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based martian geology and exploration. Spectrosc. Acta Pt. B-Atom. Spectr?2005, 60, 237–248, doi:10.1016/j.sab.2004.12.007.
[26]
Wiens, R.C.; Arvidson, R.E.; Cremers, D.A.; Ferris, M.J.; Blacic, J.D.; Seelos, F.P.; Deal, K.S. Combined remote mineralogical and elemental identification from rovers: Field and laboratory tests using reflectance and laser-induced breakdown spectroscopy. J. Geophys. Res.-Planets?2002, 107, 8003, doi:10.1029/2000JE001439.
[27]
Clegg, S.M.; Wiens, R.C.; Lawerence, D.J.; Barefield, J.E. Lunar elemental analysis with remote laser-induced breakdown spectroscopy (LIBS). Proceedings of Lunar Science Workshop, Tempe, AZ, USA, February, 2007.
[28]
Qi, H.X.; Pan, M.Z.; Lv, G.; He, Z.P.; Yan, Z.X.; Shu, R. Feasibility study on the application of laser induced breakdown spectroscopy to lunar exploration. J. Infrared Millim. Waves?2009, 28, 93–96, doi:10.3724/SP.J.1010.2009.00093.
[29]
Arp, Z.A.; Cremers, D.A.; Harris, R.D.; Oschwald, D.M.; Parker, G.R.; Wayne, D.M. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: Preliminary study for a Venus mission. Spectrosc. Acta Pt. B-Atom. Spectr?2004, 59, 987–999, doi:10.1016/j.sab.2004.05.004.
[30]
Smith, C.A.; Martinez, M.A.; Veirs, D.K.; Cremers, D.A. Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma. Spectrosc. Acta Pt. B-Atom. Spectr?2002, 57, 929–937, doi:10.1016/S0584-8547(02)00023-X.
[31]
Chinni, R.C.; Cremers, D.A.; Radziemski, L.J.; Bostian, M.; Navarro-Northrup, C. Detection of uranium using laser-induced breakdown spectroscopy. Appl. Spectrosc?2009, 63, 1238–1250, doi:10.1366/000370209789806867. 19891832
[32]
Pietsch, W.; Petit, A.; Briand, A. Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma-basic investigations and analytical results. Spectrosc. Acta Pt. B-Atom. Spectr?1998, 53, 751–761, doi:10.1016/S0584-8547(97)00123-7.
[33]
Kurniawan, K.H.; Kagawa, K. Hydrogen and deuterium analysis using laser-induced plasma spectroscopy. Appl. Spectrosc. Rev?2006, 41, 99–130, doi:10.1080/05704920500510687.
[34]
Song, K.; Lee, Y.I.; Sneddon, J. Applications of laser-induced breakdown spectrometry. Appl. Spectrosc. Rev?1997, 32, 183–235, doi:10.1080/05704929708003314.
[35]
Glumac, N.; Elliott, G. The effect of ambient pressure on laser-induced plasmas in air. Opt. Lasers Eng?2007, 45, 27–35, doi:10.1016/j.optlaseng.2006.04.002.
[36]
Cowpe, J.S.; Astin, J.S.; Pilkington, R.D.; Hill, A.E. Temporally resolved laser induced plasma diagnostics of single crystal silicon - effects of ambient pressure. Proceedings of 4th Euro Mediterranean Symposium on Laser Induced Breakdown Spectroscopy, Paris, France, September 11–13, 2007; pp. 1066–1071.
[37]
Cowpe, J.S.; Astin, J.S.; Pilkington, R.D.; Hill, A.E. Application of response surface methodology to laser-induced breakdown spectroscopy: Influences of hardware configuration. Spectrosc. Acta Pt. B-Atom. Spectr?2007, 62, 1335–1342, doi:10.1016/j.sab.2007.10.035.
[38]
Cowpe, J.S.; Pilkington, R.D. Swagelok Ultra-Torr based feed-through design for coupling optical fibre bundles into vacuum systems. Vacuum?2008, 82, 1341–1343, doi:10.1016/j.vacuum.2008.03.002.
[39]
Dreyer, C.B.; Mungas, G.S.; Thanh, P.; Radziszewski, J.G. Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions. Spectrosc. Acta Pt. B-Atom. Spectr?2007, 62, 1448–1459, doi:10.1016/j.sab.2007.10.016.
Vadillo, J.M.; Romero, J.M.F.; Rodriguez, C.; Laserna, J.J. Effect of plasma shielding on laser ablation rate of pure metals at reduced pressure. Surf. Interface Anal?1999, 27, 1009–1015, doi:10.1002/(SICI)1096-9918(199911)27:11<1009::AID-SIA670>3.0.CO;2-2.
[42]
Corsi, M.; Cristoforetti, G.; Hidalgo, M.; Iriarte, D.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E. Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features. Appl. Spectrosc?2005, 59, 853–860, doi:10.1366/0003702054411607. 16053554
[43]
Hwang, D.J.; Jeon, H.; Grigoropoulos, C.P.; Yoo, J.; Russo, R.E. Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film. Appl. Phys. Lett?2007, 91, 3.
[44]
Pardede, M.; Lie, T.J.; Kurniawan, K.H.; Niki, H.; Fukumoto, K.; Maruyama, T.; Kagawa, K.; Tjia, M.O. Crater effects on H and D emission from laser induced low-pressure helium plasma. J. Appl. Phys?2009, 106, 6.
[45]
Yalcin, S.; Tsui, Y.Y.; Fedosejevs, R. Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy. J. Anal. Atomic Spectrom?2004, 19, 1295–1301, doi:10.1039/b404132a.
[46]
Margetic, V.; Pakulev, A.; Stockhaus, A.; Bolshov, M.; Niemax, K.; Hergenroder, R. A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples. Spectrosc. Acta Pt. B-Atom. Spectr?2000, 55, 1771–1785, doi:10.1016/S0584-8547(00)00275-5.
[47]
Vors, E.; Gallou, C.; Salmon, L. Laser-induced breakdown spectroscopy of carbon in helium and nitrogen at high pressure. Spectrosc. Acta Pt. B-Atom. Spectr?2008, 63, 1198–1204, doi:10.1016/j.sab.2008.08.015.
[48]
Owens, M.; Majidi, V. Effects of high-pressure buffer gases on emission from laser-induced plasmas. Appl. Spectrosc?1991, 45, 1463–1467, doi:10.1366/0003702914335535.
[49]
Iida, Y. Effects of atmosphere on laser vaporization and excitation processes of solid samples. Spectrosc. Acta Pt. B-Atom. Spectr?1990, 45, 1353–1367, doi:10.1016/0584-8547(90)80188-O.
[50]
Young, M.; Hercher, M. Dynamics of laser-induced breakdown in gases. J. Appl. Phys?1967, 38, 4393–4400, doi:10.1063/1.1709137.
[51]
Aguilera, J.A.; Aragon, C. A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure. Appl. Phys. A-Mater?1999, 69, S475–S478, doi:10.1007/s003390051443.
[52]
Lee, Y.I.; Song, K.; Cha, H.K.; Lee, J.M.; Park, M.C.; Lee, G.H.; Sneddon, J. Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation. Appl. Spectrosc?1997, 51, 959–964, doi:10.1366/0003702971941610.
[53]
Mao, X.L.; Chan, W.T.; Shannon, M.A.; Russo, R.E. Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere. J. Appl. Phys?1993, 74, 4915–4922, doi:10.1063/1.354325.