The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.
References
[1]
Meijer, G.A.L.; Westerterp, K.R.; Verhoeven, F.M.H.; Koper, H.B.M.; ten Hoor, F. Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Trans. Biomed. Eng?1991, 38, 221–229.
[2]
Bouten, C.V.C.; Koekkoek, K.T.M.; Verduin, M.; Kodde, R.; Janssen, J.D. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng?1997, 44, 136–147.
[3]
Brézillon, P. Context in problem solving: a survey. Knowl. Eng. Rev?1999, 14, 47–80.
[4]
Wasson, G.; Sheth, P.; Alwan, M.; Granata, K.; Ledoux, A.; Cunjun, H. User intent in a shared control framework for pedestrian mobility aids. Proceedings of the International Conferences on Intelligent Robots and Systems (IROS '03), Las Vegas, NV, USA, October 27–31, 2003.
[5]
Yu, H.; Spenko, M.; Dubowsky, S. An adaptive shared control system for an intelligent mobility aid for the elderly. Auton. Rob?2003, 15, 53–66.
[6]
Hirata, Y.; Hara, A.; Kosuge, K. Motion control of passive intelligent walker using servo brakes. IEEE Trans. Rob?2007, 23, 981–990.
[7]
Chuy, O.Y.; Hirata, Y.; Zhidong, W.; Kosuge, K. A control approach based on passive behavior to enhance user interaction. IEEE Trans. Rob?2007, 23, 899–908.
[8]
Alwan, M.; Ledoux, A.; Wasson, G.; Sheth, P.; Huang, C. Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker's handles: results on normal subjects. Med. Eng. Phys?2007, 29, 380–389.
[9]
Glover, J.; Thrun, S.; Matthews, J.T. Learning user models of mobility-related activities through instrumented walking aids. Proceedings of IEEE International Conference on Robotics and Automation (ICRA '04), New Orleans, LA, USA, April 26–May 1, 2004; pp. 3306–3312.
[10]
Sabatini, A.M.; Genovese, V.; Pacchierotti, E. A mobility aid for the support to walking and object transportation of people with motor impairments. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '02), Lausanne, Switzerland, September 30–October 2, 2002; pp. 1349–1354.
[11]
Hirata, Y.; Komatsuda, S.; Kosuge, K. Fall prevention control of passive intelligent walker based on human model. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'08), Nice, France, September 22–26, 2008; pp. 1222–1228.
[12]
Krause, A.; Siewiorek, D.P.; Smailagic, A.; Farringdon, J. Unsupervised, dynamic identification of physiological and activity context in wearable computing. Proceedings of the 7th IEEE International Symposium on Wearable Computers, White Plains, NY, USA, October 21–23, 2003; pp. 88–97.
[13]
Su, M.C.; Chen, Y.Y.; Wang, K.H.; Tew, C.Y.; Huang, H. 3D arm movement recognition using syntactic pattern recognition. Artif. Intell. Eng?2000, 14, 113–118.
[14]
Begg, R.; Kamruzzaman, J. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J. Biomech?2005, 38, 401–408.
[15]
Poppe, R. Vision-based human motion analysis: an overview. Comput. Vis. Image Underst?2007, 108, 4–18.
[16]
Welch, G.; Foxlin, E. Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl?2002, 22, 24–38.
[17]
Yazdi, N.; Ayazi, F.; Najafi, K. Micromachined inertial sensors. Proc. IEEE?1998, 86, 1640–1659.
[18]
Sabatini, A.M. Inertial sensing in biomechanics: a survey of computational techniques bridging motion analysis and personal navigation. In Computational Intelligence for Movement Sciences: Neural Networks and Other Emerging Techniques; Begg, R., Palaniswami, M., Eds.; Idea Group Pubilishing: Hershey, PA, USA, 2006; pp. 70–100.
[19]
Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput. Hum. Behav?1999, 15, 571–583.
[20]
Morris, J.R.W. Accelerometry—a technique for the measurement of human body movements. J. Biomech?1973, 6, 729–736.
[21]
Padgaonkar, A.J.; Krieger, K.W.; King, A.I. Measurement of angular acceleration of a rigid body using linear accelerometers. ASME J. Appl. Mech?1975, 42, 552–556.
[22]
Cappa, P.; Masia, L.; Patane, F. Numerical validation of linear accelerometer systems for the measurement of head kinematics. J. Biomech. Eng?2005, 127, 919–928.
[23]
Aminian, K.; Robert, P.; Buchser, E.; Rutschmann, B.; Hayoz, D.; Depairon, M. Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med. Biol. Eng. Comput?1999, 37, 304–308.
[24]
Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech?2002, 35, 689–699.
[25]
Sabatini, A.M.; Martelloni, C.; Scapellato, S.; Cavallo, F. Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng?2005, 52, 486–494.
[26]
Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl?2005, 25, 38–46.
[27]
Elble, R.J. Accelerometry. In Handbook of Clinical Neurophysiology; Mark, H., Ed.; Elsevier: Maryland Heights, MO, USA, 2003; pp. 181–190.
[28]
Mathie, M.J.; Celler, B.G.; Lovell, N.H.F.; Coster, A.C. Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput?2004, 42, 679–687.
[29]
Rothney, M.P.; Neumann, M.; Beziat, A.; Chen, K.Y. An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J. Appl. Physiol?2007, 103, 1419–1427.
[30]
Veltink, P.H.; Bussmann, H.J.; de Vries, W.; Martens, W.J.; Van Lummel, R.C. Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans. Rehab. Eng?1996, 4, 375–385.
[31]
Kiani, K.; Snijders, C.J.; Gelsema, E.S. Computerized analysis of daily life motor activity for ambulatory monitoring. Technol. Health Care?1997, 5, 307–318.
[32]
Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Pervasive Computing; Springer Berlin/Heidelberg: Berlin, Germany, 2004; pp. 1–17.
[33]
Van Laerhoven, K.; Cakmakci, O. What shall we teach our pants? Proceedings of the 4th IEEE International Symposium on Wearable Computers (ISWC'00), Atlanta, GA, USA, October 16–17, 2000; pp. 77–83.
[34]
Mantyjarvi, J.; Himberg, J.; Seppanen, T. Recognizing human motion with multiple acceleration sensors. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Tucson, AZ, USA, October 7–10, 2001; pp. 747–752.
[35]
Lee, S.H.; Park, H.D.; Hong, S.Y.; Lee, K.J.; Kim, Y.H. A study on the activity classification using a triaxial accelerometer. Proceedings of the 25th Silver Anniversary International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'03), Cancun, Mexico, September 17–21, 2003; pp. 2941–2943.
[36]
Aminian, K.; Robert, P.; Jequier, E.; Schutz, Y. Estimation of speed and incline of walking using neural network. IEEE Trans. Instrum. Meas?1995, 44, 743–746.
[37]
Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell?2000, 22, 4–37.
[38]
Allen, F.R.; Ambikairajah, E.; Lovell, N.H.; Celler, B.G. Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Physiol. Meas?2006, 27, 935–951.
[39]
Song, K.-T.; Wang, Y.Q. Remote activity monitoring of the elderly using a two-axis accelerometer. Proceedings of the CACS Automatic Control Conference, Tainan, Taiwan, November 18–19, 2005.
[40]
Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data. Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligenc, Pittsburgh, PA, USA, July 9–13, 2005; pp. 1541–1546.
[41]
Randell, C.; Muller, H. Context awareness by analysing accelerometer data. Proceedings of the 4th IEEE Internat. Symp. Wearable Computers (ISWC '00), Atlanta, GA, USA, October 16–17, 2000; pp. 175–176.
[42]
Sekine, M.; Tamura, T.; Akay, M.; Fujimoto, T.; Togawa, T.; Fukui, Y. Discrimination of walking patterns using wavelet-based fractal analysis. IEEE Trans. Neur. Syst. Rehab. Eng?2002, 10, 188–196.
[43]
Sekine, M.; Tamura, T.; Togawa, T.; Fukui, Y. Classification of waist-acceleration signals in a continuous walking record. Med. Eng. Phys?2000, 22, 285–291.
[44]
Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Büla, C.; Robert, P. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng?2003, 50, 711–723.
[45]
Lee, S.W.; Mase, K. Activity and location recognition using wearable sensors. IEEE Perv. Comput?2002, 1, 24–32.
[46]
Bussmann, J.B.J.; Martens, W.L.J.; Tulen, J.H.M.; Schasfoort, F.C.; Van Den Berg Emons, H.J.G.; Stam, H.J. Measuring daily behavior using ambulatory accelerometry: the Activity Monitor. Behav. Res. Meth. Instrum. Comp?2001, 33, 349–356.
[47]
Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Informat. Technol. Biomed?2006, 10, 156–167.
[48]
Yang, J.; Xu, Y.; Chen, C.S. Human action learning via Hidden Markov Model. IEEE Trans. Syst. Man Cybern., Part A?1997, 27, 34–44.
[49]
Rabiner, L.R. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. EEE?1989, 77, 257–286.
[50]
Pylvalainen, T. Accelerometer based gesture recognition using continuous HMMs. Pattern Recogn. Image Anal?2005, 1, 639–646.
[51]
Liang, R.-H.; Ouhyoung, M. A real-time continuous alphabetic sign language to speech conversion VR system. Comput. Graph. Forum?1995, 14, 67–76.
[52]
Hannaford, B.; Lee, P. Hidden Markov Model analysis of force/torque information in telemanipulation. Internat. J. Rob. Res?1991, 10, 528–539.
[53]
Sundaresan, A.; Chowdhury, A.R. A Hidden Markov Model based framework for recognition of humans from gait sequences. Proceedings of IEEE International Conferences on Image Processing (ICIP'03), Barcelona, Spain, September 14–17, 2003; pp. 93–96.
[54]
PRTools toolbox, Available online: http://www.prtools.org/ (accessed on 29 January 2010).
[55]
MATLABArsenal, Available online: http://www.informedia.cs.cmu.edu/yanrong/ (accessed on 29 January 2010).
[56]
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: an update. SIGKDD Explor. Newsl?2009, 11, 10–18.
[57]
LIBSVM toolbox, Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 30 January 2010).
[58]
HMM toolbox, Available online: http://people.cs.ubc.ca/~murphyk/Software/HMM/ (accessed on 30 January 2010).
[59]
Sabatini, A.M. Adaptive filtering algorithms enhance the accuracy of low-cost inertial/magnetic sensing in pedestrian navigation systems. Int. J. Comput. Intell. Appl?2008, 7, 351–361.
[60]
Sabatini, A.M. Dead-reckoning method for personal navigation systems using Kalman filtering techniques to augment inertial/magnetic sensing. In Kalman Filter: Recent Advances and Applications; Moreno, V.M., Pigazo, A., Eds.; I-Tech Education and Publishing KG: Vienna, Austria, 2009; pp. 251–268.