全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Development of a Three Dimensional Neural Sensing Device by a Stacking Method

DOI: 10.3390/s100504238

Keywords: microassembly, microprobe array, three dimensional probe array

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study reports a new stacking method for assembling a 3-D microprobe array. To date, 3-D array structures have usually been assembled with vertical spacers, snap fasteners and a supporting platform. Such methods have achieved 3-D structures but suffer from complex assembly steps, vertical interconnection for 3-D signal transmission, low structure strength and large implantable opening. By applying the proposed stacking method, the previous techniques could be replaced by 2-D wire bonding. In this way, supporting platforms with slots and vertical spacers were no longer needed. Furthermore, ASIC chips can be substituted for the spacers in the stacked arrays to achieve system integration, design flexibility and volume usage efficiency. To avoid overflow of the adhesive fluid during assembly, an anti-overflow design which made use of capillary action force was applied in the stacking method as well. Moreover, presented stacking procedure consumes only 35 minutes in average for a 4 × 4 3-D microprobe array without requiring other specially made assembly tools. To summarize, the advantages of the proposed stacking method for 3-D array assembly include simplified assembly process, high structure strength, smaller opening area and integration ability with active circuits. This stacking assembly technique allows an alternative method to create 3-D structures from planar components.

References

[1]  Chcurel, M. Windows on the brain. Nature?2001, 412, 266–268, doi:10.1038/35085727. 11460129
[2]  Yao, Y.; Gulari, M.N.; Wiler, J.A.; Wise, K.D. A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications. J. Microelectromech. Syst?2007, 16, 977–988, doi:10.1109/JMEMS.2007.896712.
[3]  Frank, K.; Becker, M.C. Electrodes for extracelluar recording and stimulation. Phys. Techniques Biol. Res?1964, 5, 22–87.
[4]  Green, J.D. A simple microelectrode for recording from the central nervous system. Nature?1958, 182, 962, doi:10.1038/182962a0. 13590200
[5]  Wise, K.D.; Angell, J.B.; Starr, A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng?1970, BME-17, 238–247, doi:10.1109/TBME.1970.4502738.
[6]  Najafi, K.; Wise, K.D.; Mochizuki, T. A high-yield IC-compatible multichannel recording array. IEEE Trans. Electron Dev?1985, 32, 1206–1211, doi:10.1109/T-ED.1985.22102.
[7]  Jones, K.E.; Campbell, P.K.; Normann, R.A. A glass silicon composite intracortical electrode array. Ann. Biomed. Eng?1992, 20, 423–437, doi:10.1007/BF02368134. 1510294
[8]  Mercanzini, A.; Cheung, K.; Buhl, D.L.; Boers, M.; Maillard, A.; Colin, P.; Bensadoun, J.C.; Bertsch, A.; Renaud, P. Demonstration of cortical recording using novel flexible polymer neural probes. Sens. Actuat. A?2008, 143, 90–96, doi:10.1016/j.sna.2007.07.027.
[9]  May, G.A.; Shamma, S.A.; White, R.L. Tantalum on sapphire micro-electrode array. IEEE Trans. Electron Dev?1979, 26, 1932–1939, doi:10.1109/T-ED.1979.19798.
[10]  Wise, K.D. Silicon microsystems for neuroscience and neural prostheses. IEEE Eng. Med. Biol. Mag?2005, 24, 22–29. 16248114
[11]  Drake, K.L.; Wise, K.D.; Farraye, J.; Anderson, D.J.; Bement, S.L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng?1988, 35, 719–732, doi:10.1109/10.7273. 3169824
[12]  Najafi, K.; Hetke, J.F. Strength characterization of silicon microprobes in neurophysiological tissues. IEEE Trans. Biomed. Eng?1990, 37, 474–481, doi:10.1109/10.55638. 2345003
[13]  Najafi, K.; Ji, J.; Wise, K.D. Scaling limitations of silicon multichannel recording probes. IEEE Trans. Biomed. Eng?1990, 37, 1–11, doi:10.1109/10.43605. 2303265
[14]  Paralikar, K.J.; Clement, R.S. Collagenase-aided intracortical microelectrode array insertion: Effects on insertion force and recording performance. IEEE Trans. Biomed. Eng?2008, 55, 2258–2267, doi:10.1109/TBME.2008.923150. 18713695
[15]  Bjornsson, C.S.; Oh, S.J.; Al-Kofahi, Y.A.; Lim, Y.J.; Smith, K.L.; Turner, J.N.; De, S.; Roysam, B.; Shain, W.; Kim, S.J. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng?2006, 3, 196–207, doi:10.1088/1741-2560/3/3/002. 16921203
[16]  Polikov, V.S.; Tresco, P.A.; Reichert, W.M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Meth?2005, 148, 1–18, doi:10.1016/j.jneumeth.2005.08.015.
[17]  Wise, K.D.; Sodagar, A.M.; Yao, Y.; Gulari, M.N.; Perlin, G.E.; Najafi, K. Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE?2008, 96, 1184–1202, doi:10.1109/JPROC.2008.922564.
[18]  Campbell, P.K.; Jones, K.E.; Huber, R.J.; Horch, K.W.; Normann, R.A. A silicon-based, 3-dimensional neural interface—manufacturing process for an intracortical electrode array. IEEE Trans. Biomed. Eng?1991, 38, 758–768, doi:10.1109/10.83588. 1937509
[19]  Song, Y.K.; Patterson, W.R.; Bull, C.W.; Beals, J.; Hwang, N.; Deangelis, A.P.; Lay, C.; McKay, J.L.; Nurmikko, A.V.; Fellows, M.R.; Simeral, J.D.; Donoghue, J.P.; Connors, B.W. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable, neuroengineering applications. IEEE Trans. Neural Syst. Rehabil. Eng?2005, 13, 220–226, doi:10.1109/TNSRE.2005.848337. 16003903
[20]  Takeuchi, S.; Suzuki, T.; Mabuchi, K.; Fujita, H. 3D flexible multichannel neural probe array. J. Micromech. Microeng?2004, 14, 104–107, doi:10.1088/0960-1317/14/1/014.
[21]  Hoogerwerf, A.C.; Wise, K.D. A 3-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng?1994, 41, 1136–1146, doi:10.1109/10.335862. 7851915
[22]  Bai, Q.; Wise, K.D.; Anderson, D.J. A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans. Biomed. Eng?2000, 47, 281–289, doi:10.1109/10.827288. 10743769
[23]  Bai, Q.; Wise, K.D. Single-unit neural recording with active microelectrode arrays. IEEE Trans. Biomed. Eng?2001, 48, 911–920, doi:10.1109/10.936367. 11499528
[24]  Herwik, S.; Kisban, S.; Aarts, A.A.A.; Seidl, K.; Girardeau, G.; Benchenane, K.; Zugaro, M.B.; Wiener, S.I.; Paul, O.; Neves, H.P.; Ruther, P. Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording. J. Micromech. Microeng?2009, 19. No. 074008.
[25]  Du, J.G.; Roukes, M.L.; Masmanidis, S.C. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. J. Micromech. Microeng?2009, 19. No. 075008.
[26]  Williams, J.C.; Rennaker, R.L.; Kipke, D.R. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Protoc?1999, 4, 303–313, doi:10.1016/S1385-299X(99)00034-3.
[27]  Rousche, P.J.; Pellinen, D.S.; Pivin, D.P.; Williams, J.C.; Vetter, R.J.; Kipke, D.R. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng?2001, 48, 361–371, doi:10.1109/10.914800. 11327505
[28]  Takahashi, H.; Suzurikawa, J.; Nakao, M.; Mase, F.; Kaga, K. Easy-to-prepare assembly array of tungsten microelectrodes. IEEE Trans. Biomed. Eng?2005, 52, 952–956, doi:10.1109/TBME.2005.845224. 15887548
[29]  Adamson, A.W. Physical Chemistry of Surfaces, 5th ed ed.; John Wiley: New York, NY, USA, 1990.
[30]  Cheng, C.H.; Lin, H.H. Measurement of surface tension of epoxy resins used in dispensing process for manufacturing thin film transistor-liquid crystal displays. IEEE Trans. Adv. Pack?2008, 31, 100–106, doi:10.1109/TADVP.2007.901767.
[31]  Huang, W.; Yao, Y.; Huang, Y.; Yu, Y.Z. Surface modification of epoxy resin by polyether-polydimethylsiloxanes-polyether triblock copolymers. Polymer?2001, 42, 1763–1766, doi:10.1016/S0032-3861(00)00393-1.
[32]  Franks, W.; Schenker, W.; Schmutz, P.; Hierlemann, A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng?2005, 52, 1295–1302, doi:10.1109/TBME.2005.847523. 16041993

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133