Electronic noses (E-noses) use various types of electronic gas sensors that have partial specificity. This review focuses on commercial and experimental E-noses that use metal oxide semi-conductors. The review covers quality control applications to food and beverages, including determination of freshness and identification of contaminants or adulteration. Applications of E-noses to a wide range of foods and beverages are considered, including: meat, fish, grains, alcoholic drinks, non-alcoholic drinks, fruits, milk and dairy products, olive oils, nuts, fresh vegetables and eggs.
References
[1]
Gardner, J.; Bartlett, P.N. Electronic Nose. Principles and Applications; Oxford University Press: Oxford, UK, 1999.
[2]
Schaller, E.; Bosset, J.O.; Escher, F. ‘Electronic noses’ and their application to food. Food Sci. Technol-Leb?1998, 31, 305–316, doi:10.1006/fstl.1998.0376.
Kanan, S.M.; El-Kadri, O.M.; Abu-Yousef, I.A.; Kanan, M.C. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors?2009, 9, 8158–8196, doi:10.3390/s91008158. 22408500
[5]
Berna, A.Z.; Anderson, A.R.; Trowell, S.C. Bio-benchmarking of electronic nose sensors. Plos One?2009, 4, e6406, doi:10.1371/journal.pone.0006406. 19641604
[6]
Sears, W.M.; Colbow, K.; Slamka, R.; Consadori, F. Selective thermally cycled gas sensing using fast fourier-transform techniques. Sens. Actuat. B?1990, 2, 283–289, doi:10.1016/0925-4005(90)80155-S.
[7]
Fort, A.; Gregorkiewitz, M.; Machetti, N.; Rocchi, S.; Serrano, B.; Tondi, L.; Ulivieri, N.; Vignoli, V.; Faglia, G.; Comini, E. Selectivity enhancement of SnO2 sensors by means of operating temperature modulation. Thin Solid Films?2002, 418, 2–8, doi:10.1016/S0040-6090(02)00575-8.
[8]
Gutierrez-Osuna, R.; Gutierrez-Galvez, A.; Powar, N. Transient response analysis for temperature-modulated chemoresistors. Sens. Actuat. B?2003, 93, 57–66, doi:10.1016/S0925-4005(03)00248-X.
[9]
Ngo, K.A.; Lauque, P.; Aguir, K. High performance of a gas identification system using sensor array and temperature modulation. Sens. Actuat. B?2007, 124, 209–216, doi:10.1016/j.snb.2006.12.028.
[10]
Shahidi, F. Headspace volatile aldehydes as indicators of lipid oxidation in foods. Adv. Exp. Med. Biol?2001, 488, 113–123. 11548150
[11]
Berna, A.Z.; Clifford, D.; Boss, P.; Trowell, T. Selection of optimal sensor/temperature conditions for winegrape analysis using generalized additive modeling of thermally cycled metal oxide sensors. Proceedings of the 8th IEEE Conference of Sensors, Christchurch, New Zealand, October 25–28, 2009; pp. 1117–1120.
[12]
Binions, R.; Afonja, A.; Dungey, S.; Lewis, D.; Parkin, I.P.; Williams, D.E. Zeotite modification: towards discriminating metal oxide gas sensors. ECS Trans?2009, 19, 241–250.
Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J.R.; Santamaria, J. Gas detection With SnO2 sensors modified by zeolite films. Sens. Actuat. B?2007, 124, 99–110, doi:10.1016/j.snb.2006.12.009.
[15]
Mann, D.P.; Pratt, K.F.E.; Paraskeva, T.; Parkin, I.P.; Williams, D.E. Transition metal exchanged zeolite layers for selectivity enhancement of metal-oxide semiconductor gas sensors. IEEE Sens. J?2007, 7, 551–556, doi:10.1109/JSEN.2007.891956.
[16]
Dainty, R.H.; Edwards, R.A.; Hibbard, C.M. Time course of volatile compound formation during refrigerated storage of naturally contaminated beef in air. J. Appl. Bacteriol?1985, 59, 303–309, doi:10.1111/j.1365-2672.1985.tb03324.x. 4066549
[17]
Mayr, D.; Hartungen, E.; Mark, T.; Margesin, R.; Schinner, F. Determination of the spoilage status of meat by aroma detection using proton-transfer-reaction mass-spectrometry. Proceedings of the 10th Weurman Flavour Research Symposium, Beaune, France, June 25?28, 2002; pp. 757–760.
[18]
Lindinger, W.; Hansel, A.; Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MM)—medical applications, food control and environmental research. Int. J. Mass Spectrom?1998, 173, 191–241, doi:10.1016/S0168-1176(97)00281-4.
[19]
Winquist, F.; Hornsten, E.G.; Sundgren, H.; Lundstrom, I. Performance of an electronic nose for quality estimation of ground meat. Meas. Sci. Technol?1993, 4, 1493–1500, doi:10.1088/0957-0233/4/12/029.
[20]
Balasubramanian, S.; Panigrahi, S.; Logue, C.M.; Doetkott, C.; Marchello, M.; Sherwood, J.S. Independent component analysis-processed electronic nose data for predicting Salmonella Typhimurium populations in contaminated beef. Food Control?2008, 19, 236–246, doi:10.1016/j.foodcont.2007.03.007.
[21]
Kermit, M.; Tomic, O. Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J?2003, 3, 218–228, doi:10.1109/JSEN.2002.807488.
[22]
Vernat-Rossi, V.; Garcia, C.; Talon, R.; Denoyer, C.; Berdague, J.L. Rapid discrimination of meat products and bacterial strains using semiconductor gas sensors. Sens. Actuat. B?1996, 37, 43–48, doi:10.1016/S0925-4005(97)80070-6.
[23]
Patterson, R.L.S. 5 alpha-androst-16-Ene-3-1: compound responsible for taint in boar fat. J. Sci. Food. Agric?1968, 19, 31–37, doi:10.1002/jsfa.2740190107.
[24]
Rius, M.A.; Hortos, M.; Garcia-Regueiro, J.A. Influence of volatile compounds on the development of off-flavours in pig back fat samples classified with boar taint by a test panel. Meat Sci?2005, 71, 595–602, doi:10.1016/j.meatsci.2005.03.014. 22061204
[25]
Bourrounet, B.; Talou, T.; Gaset, A. Application of a multi-gas-sensor device in the meat industry for boar-taint detection. Sens. Actuat. B?1995, 27, 250–254, doi:10.1016/0925-4005(94)01596-A.
[26]
Bene, A.; Hayman, A.; Reynard, E.; Luisier, J.L.; Villettaz, J.C. A new method for the rapid determination of volatile substances: the SPME-direct method—Part II. Determination of the freshness of fish. Sens. Actuat. B?2001, 72, 204–207, doi:10.1016/S0925-4005(00)00652-3.
[27]
Olafsdottir, G.; Chanie, E.; Westad, F.; Jonsdottir, R.; Thalmann, C.R.; Bazzo, S.; Labreche, S.; Marcq, P.; Lundby, F.; Haugen, J.E. Prediction of microbial and sensory quality of cold smoked atlantic salmon (Salmo Salar) by electronic nose. J. Food Sci?2005, 70, S563–S574.
[28]
Haugen, J.E.; Chanie, E.; Westad, F.; Jonsdottir, R.; Bazzo, S.; Labreche, S.; Marcq, P.; Lundby, F.; Olafsdottir, G. Rapid control of smoked Atlantic salmon (Salmo salar) quality by electronic nose: Correlation with classical evaluation methods. Sens. Actuat. B?2006, 116, 72–77, doi:10.1016/j.snb.2005.12.064.
[29]
El Barbri, N.; Amari, A.; Vinaixa, M.; Bouchikhi, B.; Correig, X.; Llobet, E. Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage. Sens. Actuat. B?2007, 128, 235–244, doi:10.1016/j.snb.2007.06.007.
[30]
El Barbri, N.; Llobet, E.; El Bari, N.; Correig, X.; Bouchikhi, B. Application of a portable electronic nose system to assess the freshness of moroccan sardines. Mat. Sci. Eng. C-Bio S?2008, 28, 666–670, doi:10.1016/j.msec.2007.10.056.
[31]
Fox, P.F. Advanced Dairy Chemistry; Chapman & Hall: London, UK/New York, NY, USA, 1992.
[32]
Yu, H.C.; Wang, J.; Xu, Y. Identification of Adulterated Milk Using Electronic Nose. Sens. Mater?2007, 19, 275–285.
[33]
Benedetti, S.; Bonomi, F.; Iametti, S.; Mannino, S.; Cosio, M.S. Detection of aflatoxin M1 in ewe milk by using an electronic nose. Proceedings of the 2nd Central European Meeting 5th Croatian Congress of Food Technologists, Biotechnologists and Nutritionists, Opatija, Croatia, October 17–20, 2004; pp. 101–105.
[34]
Ampuero, S.; Bosset, J.O. The Electronic nose applied to dairy products: a review. Sens. Actuat. B?2003, 94, 1–12, doi:10.1016/S0925-4005(03)00321-6.
[35]
Mulville, T. UHT the nose knows. Food Manufact?2000, 27–28.
[36]
Mariaca, R.; Bosset, J.O. Instrumental analysis of volatile (flavour) compounds in milk and dairy products. Lait?1997, 77, 13–40, doi:10.1051/lait:199712.
[37]
Capone, S.; Epifani, M.; Quaranta, F.; Siciliano, P.; Taurino, A.; Vasanelli, L. Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis. Sens. Actuat. B?2001, 78, 174–179, doi:10.1016/S0925-4005(01)00809-7.
[38]
Capone, S.; Siciliano, P.; Quaranta, F.; Rella, R.; Epifani, M.; Vasanelli, L. Analysis of vapours and foods by means of an electronic nose based on a sol-gel metal oxide sensors array. Sens. Actuat. B?2000, 69, 230–235, doi:10.1016/S0925-4005(00)00496-2.
[39]
Labreche, S.; Bazzo, S.; Cade, S.; Chanie, E. Shelf life determination by electronic nose: application to milk. Sens. Actuat. B?2005, 106, 199–206, doi:10.1016/j.snb.2004.06.027.
[40]
Schaller, E.; Bosset, J.O.; Escher, F. Practical experience with ‘Electronic Nose’ systems for monitoring the quality of dairy products. Chimia?1999, 53, 98–102.
[41]
Jou, K.D.; Harper, W.J. Pattern recognition of Swiss cheese aroma compounds by SPME/GC and an electronic nose. Milchwissenschaft?1998, 53, 259–263.
[42]
Gutierrez-Mendez, N.; Vallejo-Cordoba, B.; Gonzalez-Cordova, A.F.; Nevarez-Moorillon, G.V.; Rivera-Chavira, B. Evaluation of aroma generation of Lactococcus Lactis with an electronic nose and sensory analysis. J. Dairy Sci?2008, 91, 49–57, doi:10.3168/jds.2007-0193. 18096924
[43]
Schaller, E.; Bosset, J.O.; Escher, F. Feasibility study: detection of rind taste off-flavour in Swiss emmental cheese using an ‘electronic nose’ and a GC-MS. Mitt. Lebensm. Hyg?2000, 91, 610–615.
[44]
Application Note 55 Comparison of Suppliers and QC Monitoring-Application with Caseinate, Available online: http://www.alpha-mos.com (accessed on 15 April 2010).
[45]
Application Note 34 Aroma Differentiation Based on Process and Origin-Application to the Dairy Industry, Available online: http://www.alpha-mos.com (accessed on 15 April 2010).
[46]
Wang, Y.W.; Wang, J.; Zhou, B.; Lu, Q.J. Monitoring storage time and quality attribute of egg based on electronic nose. Anal. Chim. Acta?2009, 650, 183–188, doi:10.1016/j.aca.2009.07.049. 19720190
[47]
Dutta, R.; Hines, E.L.; Gardner, J.W.; Udrea, D.D.; Boilot, P. Non-destructive egg freshness determination: an electronic nose based approach. Meas. Sci. Technol?2003, 14, 190–198, doi:10.1088/0957-0233/14/2/306.
Suman, M.; Riani, G.; Dalcanale, E. MOS-based artificial olfactory system for the assessment of egg products freshness. Sens. Actuat. B?2007, 125, 40–47, doi:10.1016/j.snb.2007.01.031.
[50]
Campagnoli, A.; Dell’orto, V.; Savoini, G.; Cheli, F. Screening cereals quality by electronic nose: the example of mycotoxins naturally contaminated maize and durum wheat. Proceedings of the 13th International Symposium on Olfaction and Electronic Nose, Brescia, Italy, April 15–17, 2009; pp. 507–510.
[51]
Olsson, J.; Borjesson, T.; Lundstedt, T.; Schnurer, J. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int. J. Food Microbiol?2002, 72, 203–214, doi:10.1016/S0168-1605(01)00685-7. 11845819
[52]
Borjesson, T.; Eklov, T.; Jonsson, A.; Sundgren, H.; Schnurer, J. Electronic nose for odor classification of grains. Cereal Chem?1996, 73, 457–461.
[53]
Jonsson, A.; Winquist, F.; Schnurer, J.; Sundgren, H.; Lundstrom, I. Electronic nose for microbial quality classification of grains. Int. J. Food Microbiol?1997, 35, 187–193, doi:10.1016/S0168-1605(96)01218-4. 9105927
Concina, I.; Falasconi, M.; Gobbi, E.; Bianchi, F.; Musci, M.; Mattarozzi, M.; Pardo, M.; Mangia, A.; Careri, M.; Sberveglieri, G. Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control?2009, 20, 873–880, doi:10.1016/j.foodcont.2008.11.006.
[56]
Simon, J.E.; Hetzroni, A.; Bordelon, B.; Miles, G.E.; Charles, D.J. Electronic sensing of aromatic volatiles for quality sorting of blueberries. J. Food Sci?1996, 61, 967–970, doi:10.1111/j.1365-2621.1996.tb10912.x.
[57]
Supriyadi; Shimazu, K.; Susuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Tomita, N.; Watanabe, N. Maturity discrimination of snake fruit (Salacca edulis Reinw.) cv. Pondoh based on volatiles analysis using an electronic nose device equipped with a sensor array and fingerprint mass spectrometry. Flavour Frag. J?2004, 19, 44–50, doi:10.1002/ffj.1272.
[58]
Gomez, A.H.; Wang, J.; Hu, G.X.; Pereira, A.G. Discrimination of storage shelf-life for mandarin by electronic nose technique. Lwt-Food Sci. Technol?2007, 40, 681–689, doi:10.1016/j.lwt.2006.03.010.
[59]
Gomez, A.H.; Wang, J.; Pereira, A.G. Mandarin ripeness monitoring and quality attribute evaluation using an electronic nose technique. Trans. ASABE?2007, 50, 2137–2142.
[60]
Steinmetz, V.; Crochon, M.; Talou, T.; Bourrounet, B. Sensor fusion for fruit quality assessment: application to melons. Proceedings of International Conference on Harvest and Postharvest Technologies for Fresh Fruits and Vegetables, Guanajuato, Gto, Mexico, February 20–24, 1995; pp. 488–496.
[61]
Steinmetz, V.; Sevila, F.; Bellon-Maurel, V. A Methodology for sensor fusion design: Application to fruit quality assessment. J. Agr. Eng. Res?1999, 74, 21–31, doi:10.1006/jaer.1999.0428.
[62]
Berna, A.Z.; Trowell, T.; Clifford, D.; Stone, G.; Lovell, D. Fast aroma analysis of Cabernet Sauvignon and Riesling grapes using an electronic nose. Am. J. Enol. Vitic?2007, 58, 416A–417A.
[63]
Sayago, I.; Horrillo, M.D.; Ares, L.; Fernandez, M.J.; Gutierrez, J. Tin oxide multisensor for detection of grape juice and fermented wine varieties. Sens. Mater?2003, 15, 165–176.
[64]
Sayago, I.; Horrillo, M.C.; Getino, J.; Gutierrez, J.; Ares, L.; Robla, J.I.; Fernandez, M.J.; Rodrigo, J. Discrimination of grape juice and fermented wine using a tin oxide multisensor. Sens. Actuat. B?1999, 57, 249–254, doi:10.1016/S0925-4005(99)00086-6.
[65]
Smejkalova, D.; Piccolo, A. High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chem?2010, 118, 153–158, doi:10.1016/j.foodchem.2009.04.088.
[66]
Gonzalez Martin, Y.; Cerrato Oliveros, M.C.; Perez Pavon, J.L.; Garcia Pinto, C.; Moreno Cordero, B. Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils. Anal. Chim. Acta?2001, 449, 69–80, doi:10.1016/S0003-2670(01)01355-1.
[67]
IOOC (International Olive Oil Council). COI/T.20/Document 15/Rev. 1 Organoleptic Assessment of Olive Oil. Resolution RES-3/75-IV/96.; 1996.
[68]
Garcia-Gonzalez, D.L.; Aparicio, R. Detection of vinegary defect in virgin olive oils by metal oxide sensors. J. Agric. Food Chem?2002, 50, 1809–1814, doi:10.1021/jf011320k. 11902916
[69]
Garcia-Gonzalez, D.L.; Aparicio, R. Detection of defective virgin olive oils by metal-oxide sensors. Eur. Food. Res. Technol?2002, 215, 118–123, doi:10.1007/s00217-002-0527-9.
[70]
Marti, M.; Boque, R.; Busto, O.; Guasch, J. Electronic noses in the quality control of alcoholic beverages. Trends Anal. Chem?2005, 24, 57–66, doi:10.1016/j.trac.2004.09.006.
[71]
Herbele, I.; Liebminger, A.; Weimar, U.; Gopel, W. Optimised sensor arrays with chromatographic preseparation: characterisation of alcoholic beverages. Sens. Actuat. B?2000, 68, 53–57, doi:10.1016/S0925-4005(00)00461-5.
[72]
Garcia, M.; Aleixandre, M.; Gutierrez, J.; Horrillo, M. Electronic nose for wine discrimination. Sens. Actuat. B?2006, 113, 911–916, doi:10.1016/j.snb.2005.03.078.
[73]
Aishima, T. Discrimination of liquor aromas by pattern-recognition analysis of responses from a gas sensor array. Anal. Chim. Acta?1991, 243, 293–300, doi:10.1016/S0003-2670(00)82573-8.
[74]
Schafer, T.; Serrano-Santos, M.; Rocchi, S.; Fuoco, R. Pervaporation membrane separation process for enhancing the selectivity of an artificial olfactory system (“electronic nose”). Anal. Bioanal. Chem?2006, 384, 860–866, doi:10.1007/s00216-005-0259-3. 16402173
[75]
Pinheiro, C.; Rodrigues, C.; Schafer, T.; Crespo, J. Monitoring the aroma production during wine-must fermentation with an electronic nose. Biotechnol. Bioeng?2002, 77, 632–640, doi:10.1002/bit.10141. 11807758
[76]
Guadarrama, A.; Fernandez, J.; Iniguez, M.; Souto, J.; Saja, J. Array of conducting polymer sensors for the characterisation of wines. Anal. Chim. Acta?2000, 411, 193–200, doi:10.1016/S0003-2670(00)00769-8.
[77]
McKellar, R.; Young, J.; Johnston, A.; Knight, K.; Lu, X.; Buttenham, S. Use of the electronic nose and gas chromatography-mass spectrometry to determine the optimum time for aging beer. Master Brewers Assoc. Amer?2002, 39, 99–105.
[78]
McKellar, R.; Rupasinghe, H.; Lu, X.; Knight, K. The electronic nose as a tool for the classification of fruit and grape wines from different Ontario wines. J. Sci. Food. Agric?2005, 85, 2391–2396, doi:10.1002/jsfa.2240.
[79]
Berna, A.Z.; Trowell, S.; Cynkar, W.; Cozzolino, D. Comparison of metal oxide-based electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage. J. Agric. Food Chem?2008, 56, 3238–3244, doi:10.1021/jf7037289. 18412363
[80]
Berna, A.Z.; Trowell, S.; Clifford, D.; Cynkar, W.; Cozzolino, D. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose. Anal. Chim. Acta?2009, 648, 146–152, doi:10.1016/j.aca.2009.06.056. 19646576
[81]
Pinho, O.; Ferreira, I.; Santos, L. Method optimization by solid-phase microextraction in combination with gas chromatography with mass spectrometry for analysis of beer volatile fraction. J. Chromatogr. A?2006, 1121, 145–153, doi:10.1016/j.chroma.2006.04.013. 16687150
[82]
Pearce, T.C.; Gardner, J.W.; Friel, S.; Bartlett, P.N.; Blair, N. Electronic nose for monitoring the flavor of beers. Analyst?1993, 118, 371–377, doi:10.1039/an9931800371.
[83]
Sakuma, S.; Amano, H.; Ohkochi, M. Identification of off-flavor compounds in beer. J. Am. Soc. Brew. Chem?2000, 58, 26–29.
[84]
Penza, M.; Cassano, G. Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks. Food Chem?2004, 86, 283–296, doi:10.1016/j.foodchem.2003.09.027.
[85]
Santos, J.; Arroyo, T.; Aleixandre, M.; Lozano, J.; Sayago, I.; Garcia, M.; Fernandez, M.; Ares, L.; Gutierrez, J.; Cabellos, J.; Gil, M.; Horrillo, M. A comparative study of sensor array and GC-MS: application to Madrid wines characterisation. Sens. Actuat. B?2004, 102, 299–307, doi:10.1016/j.snb.2004.04.082.
[86]
Buratti, S.; Benedetti, S.; Scampicchio, M.; Pangerod, E. Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue. Anal. Chim. Acta?2004, 525, 133–139, doi:10.1016/j.aca.2004.07.062.
[87]
Di Natale, C.; Davide, F.A.M.; D’Amico, A.; Nelli, P. An electronic nose for the recogition of the vineyard of a red wine. Sens. Actuat. B?1996, 33, 83–88, doi:10.1016/0925-4005(96)01918-1.
[88]
Di Natale, C.; D’Amico, A. The electronic nose: a new instrument for wine analysis. Ital. Food Bever. Tech?1998, 14, 17–19.
[89]
Villanueva, S.; Guadarrama, A.; Rodriguez-Mendez, M.L.; De Saja, J.A. Use of an array of metal oxide sensors coupled with solid phase microextraction for characterisation of wines study of the role of the carrier gas. Sens. Actuat. B?2008, 132, 125–133, doi:10.1016/j.snb.2008.01.035.
[90]
Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier, D.; Ghommidh, C. Electronic nose discrimination of aroma compounds in alcoholised solutions. Sens. Actuat. B?2006, 114, 665–673, doi:10.1016/j.snb.2005.05.032.
[91]
Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier-Lucia, D.; Calderon-Santoyo, M.; Ghommidh, C. Off-flavours detection in alcoholic beverages by electronic nose coupled to GC. Sens. Actuat. B?2009, 140, 29–34, doi:10.1016/j.snb.2009.02.061.
[92]
Ibeas, J.; Lozano, I.; Perdigones, F.; Jimenez, J. Detection of Dekkera-Brettanomyces strains in sherry by a nested PCR method. Appl. Environ. Microbiol?1996, 62, 998–1003. 8975627
[93]
Lozano, J.; Santos, J.P.; Horrillo, M.C. Classification of white wine aromas with an electronic nose. Talanta?2005, 67, 610–616, doi:10.1016/j.talanta.2005.03.015. 18970214
[94]
Arroyo, T.; Lozano, J.; Cabellos, J.M.; Gil-Diaz, M.; Santos, J.P.; Horrillo, C. Evaluation of wine aromatic compounds by a sensory human panel and an electronic nose. J. Agric. Food Chem?2009, 57, 11543–11549, doi:10.1021/jf902109y. 19919096
[95]
Santos, J.P.; Lozano, J.; Aleixandre, M.; Arroyo, T.; Cabellos, J.M.; Gil, M.; Horrillo, M.C. Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. Talanta?2010, 80, 1899–1906, doi:10.1016/j.talanta.2009.10.041. 20152430
[96]
Bhuyan, M.; Borah, S. Use of electronic nose in tea industry. Proceedings of International Conference on Energy, Automation and Information Technology, Kharagpur, India, December 2001; pp. 848–853.
[97]
Dutta, R.; Hines, E.L.; Gardner, J.W.; Kashwan, K.R.; Bhuyan, A. Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens. Actuat. B?2003, 94, 228–237, doi:10.1016/S0925-4005(03)00367-8.
[98]
Yu, H.; Wang, J.; Xiao, H.; Liu, M. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sens. Actuat. B?2009, 140, 378–382, doi:10.1016/j.snb.2009.05.008.
[99]
Gardner, J.W.; Shurmer, H.V.; Tan, T.T. Application of an electronic nose to the discrimination of coffees. Sens. Actuat. B?1992, 6, 71–75, doi:10.1016/0925-4005(92)80033-T.
[100]
Aishima, T. Aroma discrimination by pattern-recognition analysis of responses from semiconductor gas sensor array. J. Agric. Food Chem?1991, 39, 752–756, doi:10.1021/jf00004a027.
[101]
Pardo, M.; Niederjaufner, G.; Benussi, G.; Comini, E.; Faglia, G.; Sberveglieri, G.; Holmberg, M.; Lundstrom, I. Data preprocessing enhances the classification of different brands of espresso coffee with an electronic nose. Sens. Actuat. B?2000, 69, 397–403, doi:10.1016/S0925-4005(00)00499-8.
[102]
Pardo, M.; Sberveglieri, G. Coffee analysis with an electronic nose. IEEE T. Instrum. Meas?2002, 51, 1334–1339, doi:10.1109/TIM.2002.808038.
[103]
Falasconi, M.; Pardo, M.; Sberveglieri, G.; Ricco, I.; Bresciani, A. The novel EOS835 electronic nose and data analysis for evaluating coffee ripening. Sens. Actuat. B?2005, 110, 73–80, doi:10.1016/j.snb.2005.01.019.
[104]
Riva, M.; Benedetti, S.; Mannino, S. Shelf life of fresh cut vegetables as measured by an electronic nose: preliminary study. Ital. Food Tech?2002, 27, 5–11.
[105]
Pastorelli, S.; Torri, L.; Rodriguez, A.; Valzacchi, S.; Limbo, S.; Simoneau, C. Solid-phase micro-extraction (SPME-GC) and sensors as rapid methods for monitoring lipid oxidation in nuts. Food Addit. Contam?2007, 24, 1219–1225, doi:10.1080/02652030701426987. 17852395
[106]
Lee, S.Y.; Krochta, J.M. Accelerated shelf life testing of whey-protein-coated peanuts analyzed by static headspace gas chromatography. J. Agric. Food Chem?2002, 50, 2022–2028, doi:10.1021/jf010501j. 11902951
[107]
Rossi, V.; Talon, R.; Berdague, J.L. Rapid discrimination of Micrococcaceae species using semiconductor gas sensors. J. Microbiol. Meth?1995, 24, 183–190, doi:10.1016/0167-7012(95)00069-0.
[108]
Nychas, G.J.E.; Arkoudelos, J.S. Staphylococci—their role in fermented sausages. J. Appl. Bacteriol?1990, 69, S167–S188, doi:10.1111/j.1365-2672.1990.tb01806.x.