全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2011 

Quantum Dot Sensitized Photoelectrodes

DOI: 10.3390/nano1010079

Keywords: Quantum dots, dye-sensitized photoelectrodes, photocatalysis, solar energy conversion, titania, zinc oxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum Dots (QDs) are promising alternatives to organic dyes as sensitisers for photocatalytic electrodes. This review article provides an overview of the current state of the art in this area. More specifically, different types of QDs with a special focus on heavy-metal free QDs and the methods for preparation and adsorption onto metal oxide electrodes (especially titania and zinc oxide) are discussed. Eventually, the key areas of necessary improvements are identified and assessed.

References

[1]  Nann, T.; Ibrahim, S.K.; Woi, P.-M.; Xu, S.; Ziegler, J.; Pickett, C.J. Water splitting by visible light: A nanophotocathode for hydrogen production. Angew. Chem. Int. Ed. 2010, 49, 1574–1577.
[2]  Kudo, A.; Kato, H.; Tsuji, I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett. 2004, 33, 1534–1539.
[3]  Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. 2000, 1, 1–21.
[4]  Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 2011, 95, 735–758.
[5]  Robel, I.; Kuno, M.; Kamat, P.V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.
[6]  Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.
[7]  Bakalova, R.; Zhelev, Z.; Aoki, I.; Ohba, H.; Imai, Y.; Kanno, I. Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality. Anal. Chem. 2011, 78, 5925–5932.
[8]  Buhbut, S.; Itzhakov, S.; Tauber, E.; Shalom, M.; Hod, I.; Geiger, T.; Garini, Y.; Oron, D.; Zaban, A. Built-in quantum dot antennas in dye-sensitized solar cells. ACS Nano 2011, 4, 1293–1298.
[9]  Brennan, T.P.; Ardalan, P.; Lee, H.-B.-R.; Bakke, J.R.; Ding, I.-K.; McGehee, M.D.; Bent, S.F. Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells. Adv. Energy Mater. 2011, doi:10.1002/aenm.201100363.
[10]  Micic, O.I.; Curtis, C.J.; Jones, K.M.; Sprague, J.R.; Nozik, A.J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.
[11]  Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.
[12]  Xu, S.; Klama, F.; Ueckermann, H.; Hoogewerff, J.; Clayden, N.; Nann, T. Optical and surface characterisation of capping ligands in the preparation of InP/ZnS quantum dots. Sci. Adv. Mater. 2009, 1, 125–137.
[13]  Xu, S.; Kumar, S.; Nann, T. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 2006, 128, 1054–1055.
[14]  Battaglia, D.; Peng, X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.
[15]  Yong, K.-T.; Ding, H.; Roy, I.; Law, W.-C.; Bergey, E.J.; Maitra, A.; Prasad, P.N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2011, 3, 502–510.
[16]  Omata, T. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J. Appl. Phys. 2009, 105, 073106:1–073106:5.
[17]  Chiang, M.-Y.; Chang, S.-H.; Chen, C.-Y.; Yuan, F.-W.; Tuan, H.-Y. Quaternary CuIn(S1–xSex)2 nanocrystals: Facile heating-up synthesis, band gap tuning, and gram-scale production. J. Phys. Chem. C 2011, 115, 1592–1599.
[18]  Xie, R.; Rutherford, M.; Peng, X. Formation of High-Quality I–III–VI Semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
[19]  Castro, S.L.; Bailey, S.G.; Raffaelle, R.P.; Banger, K.K.; Hepp, A.F. Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J. Phys. Chem. B 2004, 108, 12429–12435.
[20]  Kuo, K.-T.; Chen, S.-Y.; Cheng, B.-M.; Lin, C.-C. Synthesis and characterization of highly luminescent CuInS2 and CuInS2/ZnS (core/shell) nanocrystals. Thin Solid Films 2008, 517, 1257–1261.
[21]  Fuke, N.; Hoch, L.B.; Koposov, A.Y.; Manner, V.W.; Werder, D.J.; Fukui, A.; Koide, N.; Katayama, H.; Sykora, M. CdSe quantum-dot-sensitized solar cell with ~100% internal quantum efficiency. ACS Nano 2010, 4, 6377–6386.
[22]  Szymanski, P.; Fuke, N.; Koposov, A.Y.; Manner, V.W.; Hoch, L.B.; Sykora, M. Effect of organic passivation on photoinduced electron transfer across the quantum dot/TiO2 interface. Chem. Commun. 2011, 47, 6437–6439.
[23]  Zhang, Q.; Dandeneau, C.S.; Zhou, X.; Cao, G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.
[24]  Chen, H.M.; Chen, C.K.; Chang, Y.-C.; Tsai, C.-W.; Liu, R.-S.; Hu, S.-F.; Chang, W.-S.; Chen, K.-H. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew. Chem. Int. Ed. 2010, 49, 5966–5969.
[25]  Leschkies, K.S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J.E.; Carter, C.B.; Kortshagen, U.R.; Norris, D.J.; Aydil, E.S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.
[26]  Ko, S.H.; Lee, D.; Kang, H.W.; Nam, K.H.; Yeo, J.Y.; Hong, S.J.; Grigoropoulos, C.P.; Sung, H.J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671.
[27]  O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.
[28]  Chou, T.P.; Zhang, Q.; Cao, G. Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells. J. Phys. Chem. C 2011, 111, 18804–18811.
[29]  Mor, G.K.; Varghese, O.K.; Wilke, R.H.T.; Sharma, S.; Shankar, K.; Latempa, T.J.; Choi, K.-S.; Grimes, C.A. p-Type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 2011, 8, 1906–1911.
[30]  Janotti, A.; van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501.
[31]  Lai, C.-H.; Chou, P.-T. All chemically deposited, annealing and mesoporous metal oxide free CdSe solar cells. Chem. Commun. 2011, 47, 3448–3450.
[32]  Bang, J.H.; Kamat, P.V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2011, 3, 1467–1476.
[33]  Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393.
[34]  Pong, B.-K.; Trout, B.L.; Lee, J.-Y. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: A procedure guided by computational studies. Langmuir 2011, 24, 5270–5276.
[35]  Mora-Seró, I.; Giménez, S.; Moehl, T.; Fabregat-Santiago, F.; Lana-Villareal, T.; Gómez, R.; Bisquert, J. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: The role of the linker molecule and of the counter electrode. Nanotechnology 2008, 19, 424007:1–424007:7.
[36]  Mora-Seró, I.; Likodimos, V.; Giménez, S.; Martínez-Ferrero, E.; Albero, J.; Palomares, E.; Kontos, A.G.; Falaras, P.; Bisquert, J. Fast regeneration of CdSe quantum dots by Ru dye in sensitized TiO2 electrodes. J. Phys. Chem. C 2010, 114, 6755–6761.
[37]  Guijarro, N.; Lana-Villarreal, T.; Mora-Seró, I.; Bisquert, J.; Gómez, R. CdSe quantum dot-sensitized TiO2 electrodes: Effect of quantum dot coverage and mode of attachment. J. Phys. Chem. C 2009, 113, 4208–4214.
[38]  Nam, M.; Lee, S.; Park, J.; Kim, S.-W.; Lee, K.-K. Development of hybrid photovoltaic cells by incorporating CuInS2 quantum dots into organic photoactive layers. Jpn. J. Appl. Phys. 2011, 50, 1–5.
[39]  Pong, B.-K.; Trout, B.L.; Lee, J.-Y. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: A procedure guided by computational studies. Langmuir 2008, 24, 5270–5276.
[40]  Hu, X.; Zhang, Q.; Huang, X.; Li, D.; Luo, Y.; Meng, Q. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J. Mater. Chem. 2011, 21, 15903–15905.
[41]  Liu, W.; Mitzi, D.B.; Yuan, M.; Kellock, A.J.; Chey, S.J.; Gunawan, O. 12% efficiency CuIn(Se,S)2 photovoltaic device prepared using a hydrazine solution process. Chem. Mater. 2011, 22, 1010–1014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133