全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2011 

Fabrication of Size-Tunable Metallic Nanoparticles Using Plasmid DNA as a Biomolecular Reactor

DOI: 10.3390/nano1010064

Keywords: plasmid DNA, biomolecular reactor, gold, silver, palladium, chromium nanoparticles, green synthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plasmid DNA can be used as a template to yield gold, palladium, silver, and chromium nanoparticles of different sizes based on variations in incubation time at 70 °C with gold phosphine complexes, with the acetates of silver or palladium, or chromium acetylacetonate. The employment of mild synthetic conditions, minimal procedural steps, and aqueous solvents makes this method environmentally greener and ensures general feasibility. The use of plasmids exploits the capabilities of the biotechnology industry as a source of nanoreactor materials.

References

[1]  Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.
[2]  Wagner, J.; K?hler, J.M. Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett. 2005, 5, 685–691.
[3]  Jana, N.R.; Gearheart, L.; Murphy, C.J. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 2001, 17, 6782–6786.
[4]  Shanmugam, S.; Viswanathan, B.; Varadarajan, T.K. A novel single step chemical route for noble metal nanoparticles embedded organic-inorganic composite films. Mater. Chem. Phys. 2006, 95, 51–55.
[5]  Hiramatsu, H.; Osterloh, F.E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509–2511.
[6]  Martinez-Hurtado, J.L. Metallic nanoparticle block copoloymer vesicles with enhanced optical properties. Nanomaterials 2011, 1, 20–30.
[7]  Tiwari, P.; Vig, K.; Dennis, V.; Singh, S. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 2011, 1, 31–63.
[8]  Kamat, P.V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002, 106, 7729–7744.
[9]  Campelo, J.M.; Conesa, T.D.; Gracia, M.J.; Jurado, M.J.; Luque, R.; Marinas, J.M.; Romero, A.A. Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chem. 2008, 10, 853–858.
[10]  Sondi, I.; Skapin, S.D. A biomimetic nano-scale aggregation route for the formation of submicron-size colloidal calcite particles. In Biomimetics Learning from Nature; Mukherjee, A., Ed.; InTech: West Palm Beach, FL, USA, 2010.
[11]  Okuda, M.; Kobayashi, Y.; Suzuki, K.; Sonoda, K.; Kondoh, T.; Wagawa, A.; Kondo, A.; Yoshimura, H. Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett. 2005, 5, 991–993.
[12]  Ensign, D.; Young, M.; Douglas, T. Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin. Inorg. Chem. 2004, 43, 3441–3446.
[13]  Butts, C.; Swift, J.; Kang, S.-G.; Costanzo, L.D.; Christianson, D.W.; Saven, J.G.; Dmochowski, I.J. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 2008, 47, 12729–12739.
[14]  Mandal, D.; Bolander, M.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotech. 2006, 69, 485–492.
[15]  Shchukin, D.G.; Sukhorukov, G.B. Nanoparticle synthesis in engineered organic nanoscale reactors. Adv. Mater. 2004, 16, 671–682.
[16]  Ravindra, P. Protein-mediated synthesis of gold nanoparticles. Mater. Sci. Eng. B 2009, 163, 93–98.
[17]  Slocik, J.M.; Naik, R.R.; Stone, M.O.; Wright, D.W. Viral templates for gold nanoparticle synthesis. J. Mater. Chem. 2005, 15, 749–753.
[18]  Samson, J.; Varotto, A.; Nahirney, P.C.; Toschi, A.; Piscopo, I.; Drain, C.M. Fabrication of metal nanoparticles using toroidal plasmid DNA as a sacrificial mold. ACS Nano 2009, 3, 339–344.
[19]  Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys.Chem. B 2006, 110, 15700–15707.
[20]  Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal. Chem. 2007, 79, 4215–4221.
[21]  Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloid Surface B 2007, 58, 3–7.
[22]  Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V.P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795–1797.
[23]  Leff, D.V.; Brandt, L.; Heath, J.R. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 1996, 12, 4723–4730.
[24]  Newman, J.D.S.; Blanchard, G.J. Formation of gold nanoparticles using amine reducing agents. Langmuir 2006, 22, 5882–5887.
[25]  Subramaniam, C.; Tom, R.T.; Pradeep, T. On the formation of protected gold nanoparticles from Aucl4? by the reduction using aromatic amine. J. Nanopart. Res. 2005, 7, 209–217.
[26]  Samson, J.; Nahirney, P.C.; Drain, C.M.; Piscopo, I. Simplifying electron diffraction pattern identification of mixed-material nanoparticles. Microsc. Today 2011, 19, 38–41.
[27]  Hud, N.; Polak, M. DNA-cation interactions: The major and minor grooves are flexible ionophores. Curr. Opin. Struct. Biol. 2001, 11, 293–301.
[28]  Hu, J.; Liu, Y. Pd nanoparticle aging and its implications in the suzuki cross-coupling reaction. Langmuir 2005, 21, 2121–2123.
[29]  Chandrasekhar, V.; Suriya Narayanan, R.; Thilagar, P. Organostannoxane-supported palladium nanoparticles. Highly efficient catalysts for suzuki-coupling reactions. Organometallics 2009, 28, 5883–5888.
[30]  Watt, J.; Cheong, S.; Toney, M.F.; Ingham, B.; Cookson, J.; Bishop, P.T.; Tilley, R.D. Ultrafast growth of highly branched palladium nanostructures for catalysis. ACS Nano 2009, 4, 396–402.
[31]  Maduraiveeran, G.; Ramaraj, R. Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal. Chem. 2009, 81, 7552–7560.
[32]  Encina, E.R.; Coronado, E.A. Plasmon coupling in silver nanosphere pairs. J. Phys. Chem. C 2010, 114, 3918–3923.
[33]  Mitsuishi, M.; Tanaka, H.; Obata, M.; Miyashita, T. Plasmon-enhanced luminescence from ultrathin hybrid polymer nanoassemblies for microscopic oxygen sensor application. Langmuir 2010, 26, 15117–15120.
[34]  Ramesh, G.V.; Radhakrishnan, T.P. A universal sensor for mercury (Hg, HgI, HgII) based on silver nanoparticle-embedded polymer thin film. ACS Appl. Mat. Interface. 2011, 3, 988–994.
[35]  Wang, W.; Shi, X.; Kariuki, N.N.; Schadt, M.; Wang, G.R.; Rendeng, Q.; Choi, J.; Luo, J.; Lu, S.; Zhong, C.-J. Array of molecularly mediated thin film assemblies of nanoparticles: Correlation of vapor sensing with interparticle spatial properties. J. Am. Chem. Soc. 2007, 129, 2161–2170.
[36]  Pribik, R.; Aslan, K.; Zhang, Y.; Geddes, C.D. Metal-enhanced fluorescence from chromium nanodeposits. J. Phys. Chem. C 2008, 112, 17969–17973.
[37]  Kim, S.-W.; Park, J.; Jang, Y.; Chung, Y.; Hwang, S.; Hyeon, T.; Kim, Y.W. Synthesis of monodisperse palladium nanoparticles. Nano Lett. 2003, 3, 1289–1291.
[38]  Patolsky, F.; Weizmann, Y.; Lioubashevski, O.; Willner, I. Au-nanoparticle nanowires based on dna and polylysine templates. Angew. Chem. Int. Ed. 2002, 41, 2323–2327.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133