全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2009 

Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation

DOI: 10.3390/s90201237

Keywords: Semi-automatic, road tracking, profile matching, template matching, angular texture signature, parallelepiped classification, lane marking

Full-Text   Cite this paper   Add to My Lib

Abstract:

In light of the increasing availability of commercial high-resolution imaging sensors, automatic interpretation tools are needed to extractroad features. Currently, many approaches for road extraction are available, but it is acknowledged that there is no single method that would be successful in extracting all types of roads from any remotely sensed imagery. In this paper, a novel classification of roads is proposed, based on both the roads’ geometrical, radiometric properties and the characteristics of the sensors. Subsequently, a general road tracking framework is proposed, and one or more suitable road trackers are designed or combined for each type of roads. Extensive experiments are performed to extract roads from aerial/satellite imagery, and the results show that a combination strategy can automatically extract more than 60% of the total roads from very high resolution imagery such as QuickBird and DMC images, with a time-saving of approximately 20%, and acceptable spatial accuracy. It is proven that a combination of multiple algorithms is more reliable, more efficient and more robust for extracting road networks from multiple-source remotely sensed imagery than the individual algorithms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133