全部 标题 作者 关键词 摘要
Full-Text Cite this paper Add to My Lib
设X~n为拓扑空间X的n次笛卡尔积,G为n个元素的全置换群,对,定义;则G可看作X~n上的一个同胚变换群,称X~n在群G作用下的轨道空间X~n/G为X的n次对称乘积空间,记作X~(n)。定义1 映射F:X→X~(n)称为X上的n次对称乘积映射,或简称为n映射;记,若为X~(n)中紧集,则称F为紧映
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133