全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2006 

Monitoring the Freshness of Moroccan Sardines with a Neural-Network Based Electronic Nose

DOI: 10.3390/s6101209

Keywords: Electronic nose, Fish freshness, Support Vector Machine (SVM), Fuzzy ARTMAP

Full-Text   Cite this paper   Add to My Lib

Abstract:

An electronic nose was developed and used as a rapid technique to classify thefreshness of sardine samples according to the number of days spent under cold storage (4 ±1°C, in air). The volatile compounds present in the headspace of weighted sardine sampleswere introduced into a sensor chamber and the response signals of the sensors wererecorded as a function of time. Commercially available gas sensors based on metal oxidesemiconductors were used and both static and dynamic features from the sensorconductance response were input to the pattern recognition engine. Data analysis wasperformed by three different pattern recognition methods such as probabilistic neuralnetworks (PNN), fuzzy ARTMAP neural networks (FANN) and support vector machines(SVM). The objective of this study was to find, among these three pattern recognitionmethods, the most suitable one for accurately identifying the days of cold storage undergoneby sardine samples. The results show that the electronic nose can monitor the freshness ofsardine samples stored at 4°C, and that the best classification and prediction are obtainedwith SVM neural network. The SVM approach shows improved classificationperformances, reducing the amount of misclassified samples down to 3.75 %.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133