全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Backstepping and dynamic control-allocation for attitude maneuver of spacecraft with redundant reaction fly-wheels
基于反步法与动态控制分配的航天器姿态机动控制

Keywords: spacecraft,reaction fly-wheel,backstepping,quadratic programming,dynamic control-allocation
航天器
,反作用飞轮,反步法,二次规划,动态控制分配

Full-Text   Cite this paper   Add to My Lib

Abstract:

We develop a robust adaptive controller based on the backstepping method for the attitude maneuver of the spacecraft with unknown rotational inertia and unknown external disturbances. The stability of the closed-loop system is validated by using Lyapunov analysis. In considering the redundancy of the actuators-the reaction fly-wheels, we propose a dynamic allocation algorithm based on the constrained optimal quadratic programming for distributing the control command to the proper fly-wheel. This eliminates the physical restrictions on the fly-wheel characteristics and the limitation of the maximal torque, which are required in the conventional pseudo-inverse method. In addition, it also effectively suppresses the measurement noises and rejects the abnormal data from attitude sensors, improving the smoothness of the control torque. The proposed scheme has been applied to control the attitude maneuver of a wheel-control rigid spacecraft. Simulation results validate the efficacy of the proposed method.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133