全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2007 

Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

DOI: 10.3390/s7081359

Keywords: wireless sensor networks, multi-agent system, mobile agent, target localization and classification, support vector machine.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wireless sensor networks (WSNs) are autonomous networks that have beenfrequently deployed to collaboratively perform target localization and classification tasks.Their autonomous and collaborative features resemble the characteristics of agents. Suchsimilarities inspire the development of heterogeneous agent architecture for WSN in thispaper. The proposed agent architecture views WSN as multi-agent systems and mobileagents are employed to reduce in-network communication. According to the architecture,an energy based acoustic localization algorithm is proposed. In localization, estimate oftarget location is obtained by steepest descent search. The search algorithm adapts tomeasurement environments by dynamically adjusting its termination condition. With theagent architecture, target classification is accomplished by distributed support vectormachine (SVM). Mobile agents are employed for feature extraction and distributed SVMlearning to reduce communication load. Desirable learning performance is guaranteed bycombining support vectors and convex hull vectors. Fusion algorithms are designed tomerge SVM classification decisions made from various modalities. Real world experimentswith MICAz sensor nodes are conducted for vehicle localization and classification.Experimental results show the proposed agent architecture remarkably facilitates WSNdesigns and algorithm implementation. The localization and classification algorithms alsoprove to be accurate and energy efficient.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133