全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonlinear version of Holub''s theorem and its application

Keywords: nonlinear Lipschitz operator,Holub theorem,Daugavet equation,invertibility of operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

Holub proved that any bounded linear operator T or T defined on Banach space L1(μ) satisfies Daugavet equation 1 + ∥T ∥ = Max {∥I + T ∥, ∥I T ∥ }. Holub’s theorem is generalized to the nonlinear case: any nonlinear Lipschitz operatorf defined on Banach space l1 satisfies 1 + L(f) = Max {L(I +f), L(I f)}, where L(f) is the Lipschitz constant off. The generalized Holub theorem has important applications in characterizing the invertibility of nonlinear operator.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133