|
控制理论与应用 2013
Synchronization analysis of delayed hybrid dynamical networks with quantized impulsive effects
|
Abstract:
This paper focuses on the synchronization dynamics of delayed hybrid dynamical networks with quantized impulsive effects. Based on partial contraction theory and matrix measure concept, several unified criteria for network synchronization are presented by combining the feature of quantizer. Being different from most of those results in the framework of Lyapunov stability method, the approach in this paper can remove the limitation on the nonlinear function of single node and network coupling term, thus resulting in reducing the conservativeness. The most significant feature of this paper lies in synthesizing multiple delays and impulsive effects in network node and coupling terms. Moreover, the obtained results possess practical significance because of considering the limited communication capability with impulsive effects in network transmission. Finally, numerical simulations for hybrid dynamical networks consisting of Lorenz chaotic systems as network nodes are presented to illustrate the effectiveness of the proposed results.