This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents.
References
[1]
Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens 2012, 4, 1671–1692, doi:10.3390/rs4061671.
[2]
Hardin, P.J.; Jensen, R.R. Small-scale unmanned aerial systems for environmental remote sensing. GISci. Remote Sens 2011, 48, 1–3, doi:10.2747/1548-1603.48.1.1.
[3]
Laliberte, A.S.; Rango, A. Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid Rangelands. GISci. Remote Sens 2011, 48, 4–23, doi:10.2747/1548-1603.48.1.4.
Hervouet, A.; Dunford, R.; Piégay, H.; Belletti, B; Trémélo, M. Analysis of post-flood recruitment patterns in braided-channel rivers at multiple scales based on an image series collected by unmanned aerial vehicles, ultra-light aerial vehicles and satellites. GISci. Remote Sens 2011, 48, 50–73, doi:10.2747/1548-1603.48.1.50.
[6]
Breckenridge, R.P.; Dakins, M.E. Evaluation of bare ground on rangelands using unmanned aerial vehicles: A case study. GISci. Remote Sens 2011, 48, 74–85, doi:10.2747/1548-1603.48.1.74.
[7]
Hunt, E.R.; Hively, W.D.; McCarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-Green-Blue high-resolution digital images for assessment of winter cover crop biomass. GISci. Remote Sens 2011, 48, 86–98, doi:10.2747/1548-1603.48.1.86.
[8]
Ambrosia, V.; Hutt, M.; Lulla, K. Unmanned airborne systems (UAS) for remote sensing applications: Editorial. Geocarto Int 2011, 26, 69–70, doi:10.1080/10106049.2011.553507.
[9]
Cress, J.J.; Sloan, J.L.; Hutt, M.E. Implementation of unmanned aircraft systems by the US Geological Survey. Geocarto Int 2011, 26, 133–140, doi:10.1080/10106049.2010.533199.
[10]
Laliberte, A.S.; Winters, C.; Rango, A. UAS remote sensing missions for rangeland applications. Geocarto Int 2011, 26, 141–156, doi:10.1080/10106049.2010.534557.
[11]
Towler, J.; Krawiec, B.; Kochersberger, K. Terrain and radiation mapping in post-disaster environments using an autonomous helicopter. Remote Sens 2012, 4, 1995–2015, doi:10.3390/rs4071995.
[12]
Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sens 2011, 3, 2529–2551, doi:10.3390/rs3112529.
[13]
Kelcey, J.; Lucieer, A. Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sens 2012, 4, 1462–1493, doi:10.3390/rs4051462.
[14]
Rodríguez-Canosa, G.R.; Thomas, S.; del Cerro, J.; Barrientos, A.; MacDonald, B. A real-time method to detect and track moving objects (DATMO) from unmanned aerial vehicles (UAVs) using a single camera. Remote Sens 2012, 4, 1090–1111, doi:10.3390/rs4041090.
[15]
Chiabrando, F.; Nex, F.; Piatti, D.; Rinaudo, F. UAV and RPV systems for photogrammetric surveys in archaeological areas: Two tests in the Piedmont region (Italy). J. Archaeol. Sci 2011, 3, 697–710.
[16]
Hendrickx, M.; Gheyle, W.; Bonne, J.; Bourgeois, J.; de Wulf, A.; Goossens, R. The use of stereoscopic images taken from a microdrone for the documentation of heritage—An example from the Tuekta burial mounds in the Russian Altay. J. Archaeol. Sci 2011, 30, 2968–2978.
[17]
Verhoeven, G.; Taelman, D.; Vermeulen, F. Computer Vision-based orthophoto mapping of complex archaeological sites: The ancient quarry of Pitaranha (Portugal-Spain)*. Archaeometry , doi:10.1111/j.1475-4754.2012.00667.
[18]
Acevo-Herrera, R.; Aguasca, A.; Bosch-Lluis, X.; Camps, A.; Martínez-Fernández, J.; Sánchez-Martín, N.; Pérez-Gutiérrez, C. Design and first results of an UAV-borne L-band radiometer for multiple monitoring purposes. Remote Sens 2010, 2, 1662–1679, doi:10.3390/rs2071662.
[19]
Barker, R.; King, D.J. Blanding’s turtle (emydoidea blandingii) potential habitat mapping using aerial orthophotographic imagery and object based classification. Remote Sens 2012, 4, 194–219, doi:10.3390/rs4010194.
[20]
Rock, G.; Ries, J.B.; Udelhoven, T. Sensitivity Analysis of UAV-Photogrammetry for Creating Digital Elevation Models (DEM). Proceedings of Conference on Unmanned Aerial Vehicle in Geomatics, Zurich, Switzerland, 14–16 September 2011. Volume XXXVIII-1/C22.
[21]
Bláha, M.; Eisenbeiss, H.; Grimm, D.; Limpach, P. Direct Georeferencing of UAVs. Proceedings of Conference on Unmanned Aerial Vehicle in Geomatics, Zurich, Switzerland, 14–16 September 2011. Volume XXXVIII-1/C22.
[22]
Li, C.; Zhang, G.; Lei, T.; Gong, A. Quick image-processing method of UAV without control points data in earthquake disaster area. Trans. Nonferrous Metal. Soc. Ch 2011, 21, 523–528, doi:10.1016/S1003-6326(11)60746-2.
[23]
Eisenbeiss, H.; Sauerbier, M. Investigation of UAV systems and flight modes for photogrammetric applications. Photogramm. Rec 2011, 26, 400–421, doi:10.1111/j.1477-9730.2011.00657.x.
[24]
Aber, J.; Marzolff, I.; Ries, J.B. Small Format Aerial Photography: Principles, Techniques and Geoscience Applications; Elsevier: Amsterdam, The Netherlands, 2010; p. 256.
[25]
Thamm, H.P.; Judex, M. The “Low Cost Drone”—An Interesting Tool for Process Monitoring in a High Spatial and Temporal Resolution. Proceedings of the ISPRS Commission VII Mid-Term Symposium “Remote Sensing from Pixels to Processes”, Enschede, the Netherlands, 8–11 May 2006; pp. 140–144.
[26]
Marzolff, I.; Ries, J.B. 35-mm Photography Taken from a Hot-Air Blimp. Proceedings of the First North American Symposium on Small Format Aerial Photography, Cloquet, MN, USA, 14–17 October 1997; pp. 91–101.
[27]
Marzolff, I. Gro?ma?st?bige fernerkundung mit einem unbemannten hei?luftzeppelin für GIS-gestütztes monitoring von vegetationsentwicklung und geomorphodynamik in Aragón (Spanien). Freiburger Geographische Hefte 1999, 57, 226.
[28]
Marzolff, I.; Ries, J.B.; Albert, K.-D. Kite Aerial Photography for Gully Monitoring in Sahelian Landscapes. Proceedings of the Second Workshop of the EARSeL Special Interest Group on Remote Sensing for Developing Countries, Bonn, Germany, 18–20 September 2002. (CD-ROM).
[29]
Marzolff, I.; Poesen, J. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology 2009, 111, 48–60, doi:10.1016/j.geomorph.2008.05.047.
[30]
Shruthi, R.B.V.; Kerle, N.; Jetten, V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology 2011, 134, 260–268, doi:10.1016/j.geomorph.2011.07.003.
[31]
Vrieling, A.; Rodrigues, S.C.; Bartholomeus, H.; Sterk, G. Automatic identification of erosion gullies with ASTER imagery in the Brazilian cerrados. Int. J. Remote Sens 2007, 28, 37–41.
[32]
Marzolff, I.; Ries, J.B.; Poesen, J. Short-term versus medium-term monitoring for detecting gully-erosion variability in a Mediterranean environment. Earth Surf. Process. Landf 2011, 36, 1604–1623, doi:10.1002/esp.2172.
[33]
D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.; A?t Hssa?ne, A. Monitoring Soil Erosion in the Souss Basin, Morocco, with a Multiscale Object-Based Remote Sensing Approach Using UAV and Satellite Data, Available Online: www.sciforum.net/presentation/562/pdf (accessed on 20 June 2012).
[34]
D’Oleire-Oltmanns, S.; Eisank, C.; Dr?gu?, L.; Schrott, L.; Marzolff, I.; Blaschke, T. Object-Based Landform Mapping at Multiple Scales from Digital Elevation Models (DEMs) and Aerial Photographs. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2012; pp. 496–502.
[35]
A?t Hssa?ne, A. Le Cadre Physique de la Dépression du Souss et la Dégradation de L’environnement Sédimentaire. In L’espace Rural Dans le Souss: Héritage et Changements; Bouchelkha, M., Charef, M., Zefzaf, A., Eds.; Université Ibn Zohr, Faculté des lettres et des sciences humaines, Agadir, Groupe d’études et de recherches sur le sud marocain: Agadir, Maroc, 2002; pp. 22–27.
[36]
Popp, H. Un ?Manmade Hazard?: Le surpompage dans la vallée du Souss. Aspects socio-géographiques d′une exploitation excessive en eaux souterraines. Revue de Géographie du Maroc 1983, 7, 35–52.
[37]
A?t Hssa?ne, A. Géomorphologie et Quaternaire du Piémont de Taroudant-Oulad Teima, Vallée du Souss, MarocPh.D. Dissertation. Université de Montréal, Montréal, QC, Canada, 1994.
[38]
Chandler, J. Effective application of automated digital photogrammetry for geomorphological research. Earth Surf. Process. Landf 1999, 24, 51–63, doi:10.1002/(SICI)1096-9837(199901)24:1<51::AID-ESP948>3.0.CO;2-H.
[39]
Wolf, P.R.; de Witt, B.A. Elements of Photogrammetry: With Applications in GIS, 3rd ed ed.; McGraw-Hill: Boston, MA, USA, 2000; p. 624.
[40]
Harwin, S.; Lucieer, A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sens 2012, 4, 1573–1599, doi:10.3390/rs4061573.
[41]
Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens 2009, 47, 761–770, doi:10.1109/TGRS.2008.2009355.
[42]
Walker, J.P.; Willgoose, G.R. A comparative study of Australian cartometric and photogrammetric digital elevation model accuracy. Photogramm. Eng. Remote Sensing 2006, 72, 771–779.
[43]
Giménez, R.; Marzolff, I.; Campo, M.A.; Seeger, M.; Ries, J.B.; Casalí, J.; álvarez-Mozos, J. High-resolution photogrammetric and field measurements of gullies with contrasting morphology. Earth Surf. Process. Landf 2009, 34, 1915–1926, doi:10.1002/esp.1868.
[44]
Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens 2012, 4, 1392–1410, doi:10.3390/rs4051392.