全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bounded Convergence of Forgetting Factor Least Square Algorithm for Time-Varying Systems
时变系统遗忘因子最小二乘法的有界收敛性(英文)

Keywords: time-varying system,identification,parameter estimation,least squares,bounded convergence
时变系统
,辨识,参数估计,最小二乘,有界收敛性

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on stochastic process theory, the bounded convergence of forgetting factor least square algorithm (FFLS for short) is studied and the upper bound of the parameter tracking error is given. The analyses indicate that: i) for time-invariant deterministic systems, the estimates given by the FFLS algorithm converge to their true values at exponential rate; ii) for time-invariant stochastic systems, the FFLS algorithm can give a bounded mean square parameter estimation error; iii) for time-varying stochastic systems, the FFLS algorithm may track the time-varying parameters and its parameter tracking error is bounded (that is, the parameter tracking error is small when the parameter change rate is small).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133