全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Kalman filtering-based information fusion Wiener filter of autoregressive moving average signals
基于Kalman滤波的自回归滑动平均信号信息融合Wiener滤波器

Keywords: multichannel AMAR signal,multisensor information fusion,optimal fusion rule weighted by matrices,Wiener filter,Kalman filtering method
多通道ARMA信号
,多传感器信息融合,按矩阵加权最优融合规则,Wiener滤波器,Kalman滤波方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

By using the Kalman filtering method and the linear minimum variance optimal fusion rule weighted by matrices,a multisensor information fusion Wiener filter is presented for the multichannel autoregressive moving average(ARMA) signals with white observation noise.It can handle the information fusion filtering,smoothing and prediction problems in a unified framework.In order to compute the optimal weighting matrices,the formula of computing the cross-covariance matrices among local filtering errors,is presented.Compared with the single sensor case,the estimation accuracy is improved.A simulation example for a target tracking system with three-sensor shows its effectiveness.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133