全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sequential-minimal-optimization algorithm for solving Huber-suppor-vector-regression with non-positive semi-definite kernels
求解非半正定核Huber–支持向量回归机问题的序列最小最优化算法

Keywords: support-vector-machine,non-positive semi-definite kernel,sequential-minimal-optimization algorithm,Huber-support vector regression
支持向量机
,非半正定核,序列最小最优化算法,Huber–支持向量回归机

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sequential-minimal-optimization(SMO) algorithm is effective in solving large-scale support-vectormachine(SVM) problems. However, the existing algorithms require the kernel functions to be positive definite(PD) or positive semi-definite(PSD), thus limiting their applications. Having considered their deficiencies, we propose a new algorithm for solving Huber-SVR problems with non-positive semi-definite(non-PSD) kernels. This algorithm provides desirable regression-accuracies while ensuring the convergence. Thus, it is of theoretical and practical significance.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133