全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Graphical model construction based on evolutionary algorithms

Keywords: Graphical model,Evolutionary algorithms,Bayesian network,Tree models,Bayesian Dirichlet metric

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using Bayesian networks to model promising solutions from the current population of the evolutionary algorithms can ensure efficiency and intelligence search for the optimum. However, to construct a Bayesian network that fits a given dataset is a NP-hard problem, and it also needs consuming mass computational resources. This paper develops a methodology for constructing a graphical model based on Bayesian Dirichlet metric. Our approach is derived from a set of propositions and theorems by researching the local metric relationship of networks matching dataset. This paper presents the algorithm to construct a tree model from a set of potential solutions using above approach. This method is important not only for evolutionary algorithms based on graphical models, but also for machine learning and data mining. The experimental results show that the exact theoretical results and the approximations match very well.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133