|
控制理论与应用 2010
Fuzzy associative memory network based on parameterized gathering operator
|
Abstract:
基于最大运算Max和t--范数T的神经网络模型Max-T FAM是B.Kosko提出的经典模糊联想记忆(FAM)网络的一种重要的广义形式, 其性能有多处不足. 本文利用一种参数化聚合算子_ , 提出了一种计算简单、易于硬件实现的广义模糊联想记忆(GFAM)网络, 其连接算子从f_ j 20, 1]g 中选取; 从理论上严格证明了GFAM具有一致连续性, 比所有Max-T FAM的映射能力和存储能力强很多; 接着运用模糊关系方程理论提出和分析了GFAM的一种所谓的Max-Min- 学习算法; 最后用实验对GFAM和Max-T FAM的完整可靠存储能力进行了比较, 并示例了GFAM在图像联想方面的应用.