全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The global convergence analysis of particle swarm optimization algorithm based on Markov chain
马尔科夫链的粒子群优化算法全局收敛性分析

Keywords: particle swarm optimization(PSO),transition probability,Markov chain,state space,global convergence
粒子群优化
,转移概率,Markov链,状态空间,全局收敛性

Full-Text   Cite this paper   Add to My Lib

Abstract:

We analyze the global convergence of particle swarm optimization(PSO) algorithm. The one-step transition probabilities of particle velocity and particle position are calculated. Several properties about this Markov chain are investigated. The reducibility and nonhomogeneity are proved. It is shown that the particle state space is non-recurrent. These properties show the nonexistence of conditions for this Markov chain to be a stationary process. Thus, we con rm from the transition probability that the PSO algorithm is not global convergent.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133