|
控制理论与应用 2011
Artificial immune network multi-agent optimization strategy for dynamic environment
|
Abstract:
Based on the idea of biological immune network and multi-agent technology, an artificial immune network multi-agent optimization strategy for dynamic environment(Dmaopt-aiNet) is proposed. The strategy with the target of global optimization introduces neighborhood clonal selection, neighborhood competition and neighborhood collaborative operators. Simultaneously, self-confidence of each agent can be automatically adjusted. In the optimizing process, some strategies such as double-agent network structure, double-mutation strategy and dynamic environmental monitoring are involved. Theoretical analysis shows that Dmaopt-aiNet algorithm is global convergence. Experimental results and comparison illustrate that Dmaopt-aiNet in dealing with high-dimensional dynamic optimization problems is more superior and can accurately determines the location of the optimum with good effectiveness and efficiency.