|
控制理论与应用 2009
On-line prediction of nonlinear time series using RBF neural networks
|
Abstract:
针对非线性非高斯时间序列, 提出观测噪声服从隐马尔可夫模型(HMM)的径向基函数(RBF)神经网络(RBF-HMM)预测模型, 其特点在于模型输入包含误差反馈项、RBF网络隐含层节点数的可变性和观测噪声的隐马尔可夫性; 并采用序列蒙特卡罗(SMC)方法实现基于RBF-HMM模型的时间序列在线预测. 最后采用太阳黑子数平滑月均值数据和CRU国际钢材价格指数月数据进行实证研究, 结果表明该模型的有效性.