Dendrimers are highly branched, open, covalent assemblies of branch cells (monomers) radially attached to a core in successive layers or generations. Major types of dendrimers include polyamidoamine, polypropylenimine, multiple antigen peptide, chiral, and Fréchet-type dendrimers. Their structure and dynamics can be explored by various techniques, such as scattering, spectrometry, and microscopy techniques. Specifically, the scattering techniques include small-angle neutron scattering (SANS), quasi-elastic neutron scattering (QENS), small-angle X-ray scattering (SAXS), and light scattering. Examples of their properties that can be explored by scattering techniques include: inter-molecular structure, intra-molecular cavity, radius-of-gyration (RG), hydrodynamic radius (RH), molecular weight, effective charge number of a single dendrimer molecule, water penetration into the interior of the dendrimers, and the internal dynamics. Of these properties, the hydrodynamic radius and molecular weight may be explored by DLS; the internal dynamics of dendrimers may be studied by QENS; and the others may be explored through SAXS and SANS. During the past several years, SANS and QENS have been used to study the structural properties and internal dynamics of various generations of polyamidoamine dendrimers (PAMAMs). Their potential prospects as anticancer polymer drug carriers are also discussed.
References
[1]
Garg, T.; Singh, O.; Arora, S.; Murphy, R. Dendrimer—A novel scaffold for drug delivery. Int. J. Pharm. Sci. Rev. Res. 2011, 7, 211–220.
[2]
Dykes, G.M. Dendrimers: A review of their appeal and applications. J. Chem. Technol. Biotechnol. 2001, 76, 903–918, doi:10.1002/jctb.464.
[3]
Gohel, M.C.; Parikh, R.K.; Bariya, S.H.; Nagori, S.A.; Gandhi, A.; Patel, V.; Patel, T.; Pandya, R.; Kharadi, S.; Patel, P.; et al. Dendrimer: An overview. Pharm. Rev. Target. Drug Deliv. Syst. 2009, 7. Available online: http://www.pharmainfo.net/reviews/dendrimer-overview (accessed on 21 February 2012).
[4]
Ballauff, M.; Likos, C.N. Dendrimers in solution: Insight from theory and simulation. Angew.Chem. Int. Ed. 2004, 43, 2998–3020, doi:10.1002/anie.200300602.
[5]
Fréchet, J.M.J.; Tomalia, D.A. Dendrimersand other Dendritic Polymers; Wiley: New York, NY, USA, 2001.
[6]
Sampathkumar, S.-G.; Yarema, K.J. Dendrimers for cancer treatment and diagnosis. In Nanomaterials for Cancer Diagnosis; Kumar, C.S.S.R., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; Volume 7. Nanotechnologies for the Life Sciences.
[7]
Dykes, G.M. Dendrimers: A review of their appeal and applications. J. Chem. Technol. Biotechnol. 2001, 76, 903–918, doi:10.1002/jctb.464.
[8]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers—Starburst-dendritic macromolecules. Polym. J. 1985, 17, 117–132, doi:10.1295/polymj.17.117.
[9]
Tomalia, D.A.; Naylor, A.M.; Goddard, W.A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Eng. 1990, 29, 138–175, doi:10.1002/anie.199001381.
[10]
Medina, S.H.; El-Sayed, M.E. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev. 2009, 109, 3141–3157, doi:10.1021/cr900174j. 19534493
[11]
Liu, Y.; Chen, C.-Y.; Chen, H.-L.; Hong, K.; Shew, C.-Y.; Li, X.; Liu, L.; Melnichenko, Y.B.; Smith, G.S.; Herwig, K.W.; et al. Electrostatic swelling and conformational variation observed in high-generation polyelectrolyte dendrimers. J. Phys. Chem. Lett. 2010, 1, 2020–2024, doi:10.1021/jz1006143.
[12]
Pitzer, K.S. Activity Coefficients in Electrolyte Solutions; CRC Press: Boca Raton, FL, USA, 1991.
[13]
Chen, W.R.; Porcar, L.; Liu, Y.; Butler, P.D.; Magid, L.J. Small angle neutron scattering studies of the counterion effects on the molecular conformation and structure of charged g4 PAMAM dendrimers in aqueous solutions. Macromolecules 2007, 40, 5887–5898, doi:10.1021/ma0626564.
[14]
Liu, Y.; Porcar, L.; Hong, K.L.; Shew, C.Y.; Li, X.; Liu, E.; Butler, P.D.; Herwig, K.W.; Smith, G.S.; Chen, W.R. Effect of counterion valence on the pH responsiveness of polyamidoaminedendrimer structure. J. Chem. Phys. 2010, 132, 124901, doi:10.1063/1.3358349. 20370144
[15]
Maranas, J.K. The effect of environment on local dynamics of macromolecules. Curr. Opin. Colloid Interface Sci. 2007, 12, 29–42, doi:10.1016/j.cocis.2007.03.003.
[16]
Lindner, P.; Zemb, T. Neutron, X-Ray and Light Scattering: Introduction to an Investigate Tool for Colloidal and Polymeric Systems; Elsevier: Amsterdam, The Netherlands, 1991.
[17]
Li, X.; Hong, K.; Liu, Y.; Shew, C.-Y.; Liu, L.; Herwig, K.W.; Smith, G.S.; Zhao, J.; Zhang, G.; Pispas, S.; Chen, W.-R. Water distributions in PS-b-P(S-g-PEO) block grafted copolymers aggregates in aqueous solutions revealed by contrast variation SANS study. J. Chem. Phys. 2010, 133, 144912, doi:10.1063/1.3493331. 20950046
[18]
Kline, S.R. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Cryst. 2006, 39, 895–900, doi:10.1107/S0021889806035059.
[19]
Laurati, M.; Stellbrink, J.; Lund, R.; Willner, L.; Zaccarelli, E.; Richter, D. Asymmetric poly(ethylene-alt-propylene)-poly(ethylene oxide) micelles: A system with starlike morphology and interactions. Phys. Rev. E 2007, 76, 041503, doi:10.1103/PhysRevE.76.041503.
[20]
Smit, B.; Frenkel, D. Understanding Molecular Simulation; Academic Press: Amsterdam, The Netherlands, 2001.
[21]
Li, T.F.; Hong, K.; Porcar, L.; Verduzco, R.; Butler, P.D.; Smith, G.S.; Liu, Y.; Chen, W.R. Assess the intramolecular cavity of a PAMAM dendrimer in aqueous solution by small-angle neutron scattering. Macromolecules 2008, 41, 8916–8920, doi:10.1021/ma801555j.
[22]
Porcar, L.; Hong, K.L.; Butler, P.D.; Herwig, K.W.; Smith, G.S.; Liu, Y.; Chen, W.R. Intramolecular structural change of PAMAM dendrimers in aqueous solutions revealed by small-angle neutron scattering. J. Phys. Chem. B 2010, 114, 1751–1756, doi:10.1021/jp9064455. 20070093
[23]
Porcar, L.; Liu, Y.; Verduzco, R.; Hong, K.L.; Butler, P.D.; Magid, L.J.; Smith, G.S.; Chen, W.R. Structural INVESTIGATION OF PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: Effect of generation. J. Phys. Chem. B 2008, 112, 14772–14778, doi:10.1021/jp805297a. 18950222
[24]
Hansen, J.-P.; McDonald, I.R. Theory of Simple Liquids, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2006.
[25]
Chen, S.-H.; Sheu, E.Y. MicellarSolutions and Microemulsions: Structure, Dynamics, and Statistical Thermodynamics; Springer: New York, NY, 1990.
[26]
Hong, K.; Liu, Y.; Porcar, L.; Liu, D.; Gao, C.Y.; Smith, G.S.; Herwig, K.W.; Cai, S.; Li, X.; Wu, B.; et al. Structural response of polyelectrolyte dendrimer towards molecular protonation: The inconsistency revealed by SANS and NMR. J. Phys.: Condens. Matter 2011, 24, 064116.
[27]
Porcar, L.; Liu, Y.; Hong, K.L.; Butler, P.D.; Huang, E.W.; Chen, W.R. Counterion association and structural conformation change of charged PAMAM dendrimer in aqueous solutions revealed by small angle neutron scattering. Macromol. Symp. 2009, 279, 65–71, doi:10.1002/masy.200950511.
[28]
Liu, Y.; Porcar, L.; Hong, K.L.; Shew, C.Y.; Li, X.; Liu, E.; Butler, P.D.; Herwig, K.W.; Smith, G.S.; Chen, W.R. Effect of counterion valence on the pH responsiveness of polyamidoaminedendrimer structure. J. Chem. Phys. 2010, 132, 124901, doi:10.1063/1.3358349. 20370144
[29]
Liu, Y.; Chen, C.Y.; Chen, H.L.; Hong, K.L.; Shew, C.Y.; Li, X.; Liu, L.; Melnichenko, Y.B.; Smith, G.S.; Herwig, K.W.; et al. Electrostatic swelling and conformational variation observed in high-generation polyelectrolyte dendrimers. J. Phys. Chem. Lett. 2010, 1, 2020–2024, doi:10.1021/jz1006143.
[30]
Grohn, F.; Bauer, B.J.; Akpalu, Y.A.; Jackson, C.L.; Amis, E.J. Dendrimer templates for the formation of gold nanoclusters. Macromolecules 2000, 33, 6042–6050, doi:10.1021/ma000149v.
Zanotti, J.M.; Bellissent-Funel, M.C.; Parello, J. Hydration-coupled dynamics in proteins studied by neutron scattering and NMR: The case of the typical EF-hand calcium-binding parvalbumin. Biophys. J. 1999, 76, 2390–2411, doi:10.1016/S0006-3495(99)77395-9.
Prosa, T.J.; Bauer, B.J.; Amis, E.J.; Tomalia, D.A.; Scherrenberg, R. A SAXS study of the internal structure of dendritic polymer systems. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 2913–2924, doi:10.1002/(SICI)1099-0488(199712)35:17<2913::AID-POLB14>3.0.CO;2-A.
[36]
Prosa, T.J.; Bauer, B.J.; Amis, E.J. From stars to spheres: A SAXS analysis of dilute dendrimer solutions. Macromolecules 2001, 34, 4897–4906, doi:10.1021/ma0002186.
[37]
Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A. Dynamics of star-burst dendrimers in solution in relation to their structural properties. J. Chem. Phys. 2002, 117, 4047–4062, doi:10.1063/1.1493771.
[38]
Mallamace, F.; Canetta, E.; Lombardo, D.; Mazzaglia, A.; Romeo, A.; Scolaro, L.M.; Maino, G. Scaling properties in the internal structure of dendrimer systems. Physica A 2002, 304, 235–243, doi:10.1016/S0378-4371(01)00548-9.
[39]
Kucerka, N.; Nagle, J.F.; Sachs, J.N.; Feller, S.E.; Pencer, J.; Jackson, A.; Katsaras, A.J. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 2008, 95, 2356–2367, doi:10.1529/biophysj.108.132662. 18502796
[40]
Jeng, U.; Lin, T.L.; Hu, Y.; Lin, J.M.; Huang, Y.S.; Liang, K.S.; Fan, L.; Thiyagarajan, P. Complex structure of fullerene star ionomers and sodium dodecyl sulfate resolved by contrast variation with SANS and SAXS. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 600, 294–296, doi:10.1016/j.nima.2008.11.048.
Jana, C.; Jayamurugan, G.; Ganapathy, R.; Maiti, P.K.; Jayaraman, N.; Sood, A.K. Structure of poly(propyl ether imine) dendrimer from fully atomistic molecular dynamics simulation and by small angle x-ray scattering. J. Chem. Phys. 2006, 124, 204719, doi:10.1063/1.2194538. 16774376
[43]
Frisken, B.J. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl. Opt. 2001, 40, 4087–4091, doi:10.1364/AO.40.004087.
[44]
Provencher, S.W. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comp. Phys. Commun. 1982, 27, 229–242, doi:10.1016/0010-4655(82)90174-6.
[45]
Choi, J.S.; Nam, K.; Park, J.; Kim, J.B.; Lee, J.K.; Park, J. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J. Control. Release 2004, 99, 445–456, doi:10.1016/j.jconrel.2004.07.027.
[46]
Mourey, T.H.; Turner, S.R.; Rubinstein, M.; Frechet, J.M.J.; Hawker, C.J.; Wooley, K.L. Unique behavior of dendritic macromolecules—Intrinsic-viscosity of polyether dendrimers. Macromolecules 1992, 25, 2401–2406, doi:10.1021/ma00035a017.
Patri, A.K.; Kukowska-Latallo, J.F.; Baker, J.R., Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Del. Rev. 2005, 57, 2203–2214, doi:10.1016/j.addr.2005.09.014.
[49]
Kojima, C.; Kono, K.; Maruyama, K.; Takagishi, T. Synthesis of polyamidoaminedendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug. Chem. 2000, 11, 910–917, doi:10.1021/bc0000583.
Fischer, M.; V?gtle, F. Dendrimers: From design to application—A progress report. Angew. Chem. Int. Ed. 1999, 38, 884–905, doi:10.1002/(SICI)1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K.
[53]
Esfand, R.; Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discovery Today 2001, 6, 427–436, doi:10.1016/S1359-6446(01)01757-3.
[54]
Boas, U.; Heegaard, P.M.H. Dendrimers in drug research. Chem. Soc. Rev. 2004, 33, 43–63, doi:10.1039/b309043b. 14737508
[55]
Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857–1959, doi:10.1021/cr900327d. 20356105
[56]
Majoros, I.J.; Myc, A.; Thomas, T.; Mehta, C.B.; Baker, J.R. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality. Biomacromolecules 2006, 7, 572–579, doi:10.1021/bm0506142.
[57]
Maiti, P.K.; Cagin, T.; Lin, S.T.; Goddard, W.A. Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 2005, 38, 979–991, doi:10.1021/ma049168l.