全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pharmaceutics  2012 

Breakdown of the Blood-Ocular Barrier as a Strategy for the Systemic Use of Nanosystems

DOI: 10.3390/pharmaceutics4020252

Keywords: blood-ocular barrier, hypotony, nanotechnology, ocular drug delivery system, ocular inflammatory mediators, systemic route

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several drug delivery systems have been proposed to overcome physiological barriers, improving ocular bioavailability. Systemic routes are seldom used due to the blood-ocular barrier. Novel drug delivery systems based on nanotechnology techniques have been developed to overcome ocular physiological barriers. This non-systematic review suggests the utilization of a transitory blood-ocular breakdown to allow the access of drugs by nanotechnology drug delivery systems via the systemic route. We discuss the possible ways to cause the breakdown of the blood-ocular barrier: acute inflammation caused by intraocular surgery, induced ocular hypotony, and the use of inflammatory mediators. The suitability of use of the systemic route and its toxic effects are also discussed in this article.

References

[1]  Gunda, S.; Hariharan, S.; Mandava, N.; Mitra, A.K. Barriers in Ocular Drug Delivery. In Ocular Transporters in Ophthalmic Diseases and Drug Delivery; Tombran-Tink, J., Barnstable, C.J., Eds.; Humana Press: Totowa, NJ, USA, 2008; p. 399. Chapter 21.
[2]  Cunha-Vaz, J.G. The blood-ocular barriers. Doc. Ophthalmol. 1976, 41, 287–327, doi:10.1007/BF00146764. 1009819
[3]  Worakul, N.; Robinson, J.R. Ocular pharmacokinetics/pharmacodynamics. Eur. J. Pharm. Biopharm. 1997, 44, 71–83, doi:10.1016/S0939-6411(97)00064-7.
[4]  Cunha-Vaz, J.G. The blood-ocular barriers. Surv. Ophthalmol. 1979, 23, 279–296, doi:10.1016/0039-6257(79)90158-9. 380030
[5]  Muh-Shy, C.; Hou, P.K.; Tong-Yuan, T.; Lin, B.J. Blood-ocular barriers. Tzu Chi Med. J. 2008, 20, 25–34, doi:10.1016/S1016-3190(08)60004-X.
[6]  Smith, R.S.; Rudt, L.A. Ocular vascular and epitelial barriers to microperoxidase. Invest. Ophthalmol. 1975, 14, 556–560. 806549
[7]  Peyman, G.A.; Bok, D. Peroxidase diffusion in the normal and laser-coagulated primate retina. Invest. Ophthalmol. 1972, 11, 35–45. 4621358
[8]  Cunha-Vaz, J.G. The blood-retinal barriers. Doc. Ophthalmol. 1976, 41, 287–327, doi:10.1007/BF00146764. 1009819
[9]  Green, K.; Pedersno, J.E. Effect of 1-tetrahydrocannabinol on aqueous dynamics and ciliary body permeability in the rabbit. Exp. Eye Res. 1973, 15, 499–507, doi:10.1016/0014-4835(73)90142-5. 4702382
[10]  Schmack, I.; V?lcker, H.E.; Grossniklaus, H.E. Phthisi bulbi. In Ocular Disease Mechanisms and Management; Levin, L.A., Albert, D.M., Eds.; Saunders Elsevier: Maryland Heights, MO, USA, 2010; p. 420. Chapter 54.
[11]  V?lcker, H.E.; Naumann, G.O.H. Morphology of uveal and retinal edemas in acute and persisting hypotony. Mod. Probl. Ophthalmol. 1979, 20, 34–41. 548769
[12]  Raviola, G. The structural basis of the blood-ocular barriers. Exp. Eye Res. 1997, 25, 27–63.
[13]  Schubert, H.D. Postsurgical hypotony: Relationship to fistulization, inflammation, chorioretinal lesions, and the vitreous. Surv. Ophthalmol. 1996, 41, 97–125, doi:10.1016/S0039-6257(96)80001-4.
[14]  Bill, A.; Philips, C. Uveoscleral drainage of aqueous humor in human eyes. Exp. Eye Res. 1971, 12, 275–281, doi:10.1016/0014-4835(71)90149-7. 5130270
[15]  Salminen, L.; Chioralia, G.; Scheiber, S. Effect of acute ocular hypotony on the blood-ocular barrier. Trans. Ophthalmol. Soc. (UK) 1977, 97, 621–622.
[16]  Servatt, J.J.; Bernardino, C.R. Effects of common topical antiglaucoma medications on the ocular surface, eyelids and periorbital tissue. Drugs Aging 2011, 28, 267–282, doi:10.2165/11588830-000000000-00000. 21428462
[17]  Baudouin, C. Detrimental effect of preservatives in eyedrops: Implications for the treatment of glaucoma. Acta Ophthalmol. 2008, 86, 716–726, doi:10.1111/j.1755-3768.2008.01250.x. 18537937
[18]  Baudouin, C.; Labbé, A.; Liang, H.; Pauly, A.; Brignole-Baudouin, F. Preservatives in eyedrops: The good, the bad and the ugly. Prog. Retin. Eye Res. 2010, 29, 312–334, doi:10.1016/j.preteyeres.2010.03.001. 20302969
[19]  Cho, J.H.; Kwun, Y.S.; Jang, H.S.; Kang, J.M.; Won, Y.S.; Yoon, H.R. Long-term use of preservatives on rat nasal respiratory mucosa: Effects of benzalkonium chloride and potassium sorbate. Laryngoscope 2000, 110, 312–317, doi:10.1097/00005537-200002010-00025. 10680936
[20]  Reardon, G.; Kotak, S.; Schwartz, G.F. Objective assessment of compliance and persistence among patients treated for glaucoma and ocular hypertension: A systematic review. Patient Prefer Adherence 2011, 5, 441–463. 22003282
[21]  Reardon, G.; Schwartz, G.F.; Mozaffari, E. Patient persistency with topical ocular hypotensive therapy in a managed care population. Am. J. Ophthalmol. 2004, 137, S3–S12, doi:10.1016/j.ajo.2003.10.035. 14697909
[22]  Jaycock, P.D.; Mather, C.M.; Ferris, J.D.; Kirkpatrick, J.N. Rectus muscle trauma complicating sub-Tenon’s local anaesthesia. Eye (Lond) 2001, 15, 583–586, doi:10.1038/eye.2001.189.
[23]  Faure, C.; Faure, L.; Billotte, C. Globe perforation following no-needle sub-Tenon anesthesia. J. Cataract Refract. Surg. 2009, 35, 1471–1472, doi:10.1016/j.jcrs.2009.03.024. 19631138
[24]  Kumar, C.M.; Eid, H.; Dodds, C. Sub-Tenon’s anaesthesia: Complications and their prevention. Eye (Lond) 2011, 25, 694–703, doi:10.1038/eye.2011.69.
[25]  Penha, F.M.; Rodrigues, E.B.; Maia, M.; Furlani, B.A.; Regatieri, C.; Melo, G.B.; Magalh?es, O.; Manzano, R.; Farah, M.E. Retinal and ocular toxicity in ocular application of drugs and chemicals—Part II: Retinal toxicity of current and new drugs. Ophthalmic Res. 2010, 44, 205–224, doi:10.1159/000316695. 20699625
[26]  Jager, R.D.; Aiello, L.P.; Patel, S.C.; Cunningham, E.T., Jr. Risks of intravitreous injection: A comprehensive review. Retina 2004, 24, 676–698, doi:10.1097/00006982-200410000-00002. 15492621
[27]  Sampat, K.M.; Garg, S.J. Complications of intravitreal injections. Curr. Opin. Opthalmol. 2010, 21, 178–183, doi:10.1097/ICU.0b013e328338679a.
[28]  de Smet, P.A.; Denneboom, W.; Kramers, C.; Grol, R. A composite screening tool for medication reviews of outpatients: general issues with specific examples. Drug Aging 2007, 24, 733–760, doi:10.2165/00002512-200724090-00003.
[29]  Raghava, S.; Goel, G.; Kompella, U.B. Ophthalmic Applications of Nanotechnology. In Ocular Transporters in Ophthalmic Diseases and Drug Delivery; Tombran-Tink, J., Barnstable, C.J., Eds.; Humana Press: Totowa, NJ, USA, 2008; p. 418. Chapter 22.
[30]  Amrite, A.C.; Kompella, U.B. Nanoparticles for Ocular Drug Delivery; Gupta, R.B., Kompella, U.B., Eds.; Taylor and Francis: New York, NY, USA, 2006.
[31]  Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649, doi:10.1016/j.addr.2008.08.002. 18840488
[32]  Sahoo, S.K.; Dilnawaz, F.; Krishnakumar, S. Nanotechnology in ocular drug delivery. Drug Discov. Today 2008, 13, 144–151, doi:10.1016/j.drudis.2007.10.021. 18275912
[33]  Sahoo, S.K.; Labhasetwar, V. Nanotech approaches in drug delivery and imaging. Drug Discov. Today 2003, 8, 1112–1120, doi:10.1016/S1359-6446(03)02903-9. 14678737
[34]  Vasir, J.K.; Reddy, M.K.; Labhasetwar, V. Nanosystems in drug targeting: Opportunities and challenges. Curr. Nanosci. 2005, 1, 47–64, doi:10.2174/1573413052953110.
[35]  Singh, S.R.; Grossniklaus, H.E.; Kang, S.J.; Edelhauser, H.F.; Ambati, B.K.; Kompella, U.B. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther. 2009, 16, 645–659, doi:10.1038/gt.2008.185. 19194480
[36]  Mainardes, R.M.; Silva, L.P. Drug delivery systems: Past, present, and future. Curr. Drug Targets 2004, 5, 449–455, doi:10.2174/1389450043345407.
[37]  Zeimer, R.; Goldberg, M.F. Novel ophthalmic therapeutic modalities based on noninvasive light-targeted drug delivery to the posterior pole of the eye. Adv. Drug Deliv. Rev. 2001, 52, 49–61, doi:10.1016/S0169-409X(01)00194-6. 11672875
[38]  Niederhafner, P.; Sebestik, J.; Jezek, J. Peptide dendrimers. J. Pept. Sci. 2005, 11, 757–788, doi:10.1002/psc.721. 16196002
[39]  D’Emmanuele, A.; Attwood, D. Dendrimer-drug interactions. Adv. Drug Deliv. Rev. 2005, 57, 2147–2162, doi:10.1016/j.addr.2005.09.012. 16310283
[40]  Perini, G.; Saettone, M.F.; Carafa, M.; Santucci, E.; Alhaique, F. Niosomes as carriers for ophthalmic drugs: In vitro/in vivo evaluation. Boll. Chim. Farm. 1996, 135, 145–146. 8791827
[41]  Katz, B.; Goldbaum, M. Macugen (pegaptanib sodium), a novel ocular therapeutic that targets vascular endothelial growth factor (VEGF). Int. Ophthalmol. Clin. 2006, 46, 141–154. 17060800
[42]  Maranh?o, R.C.; Cesar, T.B.; Pedroso, M.T.; Hirata, M.H.; Mesquita, C.H. Metabolic behavior in rats of a nonprotein microemulsion resembling LDL. Lipids 1993, 28, 691–696, doi:10.1007/BF02535988. 8377582
[43]  Maranh?o, R.C.; Garicochea, B.; Silva, E.L.; Dorlhiac-Llacer, P.; Cadena, S.M.; Coelho, I.J.; Meneghetti, J.C.; Pileggi, F.J.; Chamone, D.A. Plasma kinetics and biodistribution of a lipid emulsion resembling low-density lipoprotein in patients with acute leukemia. Cancer Res. 1994, 54, 4660–4666. 8062260
[44]  Azevedo, C.H.; Carvalho, J.P.; Valduga, C.J.; Maranh?o, R.C. Plasma kinetics and uptake by the tumor of a cholesterol-rich microemulsion (LDE) associated to etoposide oleate in patients with ovarian carcinoma. Gynecol. Oncol. 2005, 97, 178–182, doi:10.1016/j.ygyno.2004.12.015. 15790455
[45]  Pinheiro, K.V.; Hungria, V.T.; Ficker, E.S.; Valduga, C.J.; Mesquita, C.H.; Maranh?o, R.C. Plasma kinetics of a cholesterol-rich microemulsion (LDE) in patients with Hodgkin’s and non-Hodgkin’s lymphoma and a preliminary study on the toxicity of etoposide associated with LDE. Cancer Chemother. Pharmacol. 2006, 57, 624–630, doi:10.1007/s00280-005-0090-8. 16133527
[46]  Maranh?o, R.C.; Tavares, E.R.; Padoveze, A.F.; Valduga, C.J.; Rodrigues, D.G.; Pereira, M.D. Paclitaxel associated with cholesterol-rich nanoemulsions promotes atherosclerosis regression in the rabbit. Atherosclerosis 2008, 197, 959–966, doi:10.1016/j.atherosclerosis.2007.12.051. 18289548
[47]  Tavares, E.R.; Freitas, F.R.; Diament, J.; Maranh?o, R.C. Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions. Int. J. Nanomed. 2011, 6, 2297–2304.
[48]  Bulgarelli, A.; Dias, A.A.M.; Caramelli, B.; Maranh?o, R.C. Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. J. Cardiovasc. Pharmacol. 2011, 59, 308–314.
[49]  Louren?o-Filho, D.D.; Maranh?o, R.C.; Méndez-Contreras, C.A.; Tavares, E.R.; Freitas, F.R.; Stolf, N.A. An artificial nanoemulsion carrying paclitaxel decreases the transplant heart vascular disease: A study in a rabbit graft model. J. Thorac. Cardiovasc. Surg. 2011, 141, 1522–1528, doi:10.1016/j.jtcvs.2010.08.032. 21458008
[50]  Adbika, K.; Siani Shadbad, M.R.; Nokhdochi, A.; Javadzedeh, A.; Barzegar-Jalali, M.; Barar, J.; Mohammadi, G.; Omidi, Y. Piroxicam nanoparticles for ocular delivery: Physicochemical characterization and implementation in endotoxin-induced uveitis. J. Drug Target. 2007, 15, 407–416, doi:10.1080/10611860701453125. 17613659
[51]  de la Fuente, M.; Seijo, B.; Alonso, M.J. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 2008, 49, 2016–2024, doi:10.1167/iovs.07-1077. 18436835
[52]  de Campos, A.M.; Sánchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001, 224, 159–168, doi:10.1016/S0378-5173(01)00760-8.
[53]  Attama, A.A.; Reichi, S.; Muller-Goymann, C.C. Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int. J. Pharm. 2008, 355, 307–313, doi:10.1016/j.ijpharm.2007.12.007. 18242022
[54]  Muller, R.H.; Runge, A.S.; Ravelli, V.; Thunemann, A.F.; Mehnert, W.; Souto, E.B. Cyclosporine-loaded solid lipid nanoparticles (SLN): Drug-lipid physicochemical interations and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 2008, 68, 535–544, doi:10.1016/j.ejpb.2007.07.006. 17804210
[55]  Fialho, S.L.; da Silva-Cunha, A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin. Exp. Ophthalmol. 2004, 32, 626–632, doi:10.1111/j.1442-9071.2004.00914.x.
[56]  Garty, N.; Lusky, M.; Zalish, M. Pilocarpine in submicron emulsion formulation for treatment of ocular hypertension: A phase II clinical trial. Invest. Ophthalmol. Vis. Sci. 1994, 35, 2175–2186.
[57]  Civiale, C.; Licciaradi, M.; Cavallaro, G.; Giammona, G.; Mazzone, M.G. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int. J. Pharm. 2009, 378, 177–186, doi:10.1016/j.ijpharm.2009.05.028. 19465101
[58]  Pignatello, R.; Bucolo, C.; Spedalieri, G.; Maltese, A.; Puglisi, G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002, 23, 3247–3255, doi:10.1016/S0142-9612(02)00080-7. 12102196
[59]  Aggarwal, D.; Garg, A.; Kaur, L.P. Development of a topical niosonaml preparation of acetazolamide: preparation and evaluation. J. Pharm. Pharmacol. 2004, 56, 1509–1517, doi:10.1211/0022357044896. 15563757
[60]  Loftsson, T.; Fririksdóttir, H.; Thórsdóttir, S.; Stefánsson, E. The effects of hydroxypropyl methylcellulose on the release of dexamethasone from aqueous 2-hydroxypropyl-β-cyclodextrin formulations. Int. J. Pharm. 1994, 104, 181–184, doi:10.1016/0378-5173(94)90194-5.
[61]  Kristinsson, J.K.; Fririksdóttir, H.; Thórsdóttir, S.; Sigurdardottir, A.M.; Stefánsson, E.; Loftsson, T. Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops. Aqueous humor pharmacokinetics in humans. Invest. Ophthalmol. Vis. Sci. 1996, 37, 1119–1203.
[62]  Bochot, A.; Fattai, E.; Gullk, A.; Couyarraze, G.; Couvreur, P. Liposomes dipersed within a thermosensitive gel: A new dosage form for ocular delivery of oligonucleotides. Pharm. Res. 1998, 15, 1364–1369, doi:10.1023/A:1011989202488. 9755886
[63]  Ahmed, I.; Patton, T.F. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int. J. Pharm. 1987, 38, 9–21, doi:10.1016/0378-5173(87)90092-5.
[64]  Vandamme, T.F.; Brobeck, L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release 2005, 102, 23–38, doi:10.1016/j.jconrel.2004.09.015. 15653131
[65]  Saettone, M.F.; Perini, G.; Carafa, M.; Santucci, E.; Alhaique, F. Non-ionic surfactant vesicles as ophthalmic carriers for cyclopentolate. A preliminary evaluation. STP Pharma Sci. 1996, 6, 94–98.
[66]  Shah, S.S.; Denham, L.V.; Elison, J.R.; Bhattacharjee, P.S.; Clement, C.; Huq, T.; Hill, J.M. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev. Ophthalmol. 2010, 5, 75–93, doi:10.1586/eop.09.70. 20305803
[67]  Kim, J.H.; Kim, K.W.; Kim, M.H.; Yu, Y.S. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 2009, 20, doi:10.1088/0957-4484/20/50/505101.
[68]  Alyaudtin, R.N.; Reichel, A.; Lobenberg, R.; Ramge, P.; Kreuter, J.; Begley, D.J. Interaction of poly(butylcyanoacrylate nanoparticles with the blood-brain barrier in vivo and in vitro. J. Drug Target. 2001, 9, 209–221, doi:10.3109/10611860108997929.
[69]  Holsapple, M.P.; Farland, W.H.; Landry, T.D.; Monteiro-Riviere, N.A.; Carter, J.M.; Walker, N.J.; Thomas, K.V. Research strategies for safety evaluation of nanomaterials, part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol. Sci. 2005, 88, 12–17, doi:10.1093/toxsci/kfi293.
[70]  Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627, doi:10.1126/science.1114397. 16456071
[71]  Shokeen, M.; Fettig, N.M.; Rossin, R. Synthesis in vitro and in vivo evaluation of radiolabed nanoparticles. Q. J. Nucl. Mol. Imaging 2008, 52, 267–277.
[72]  Almeida, J.P.; Chen, A.L.; Foster, A.; Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 2011, 6, 815–835, doi:10.2217/nnm.11.79.
[73]  Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671, doi:10.1039/c0cs00018c.
[74]  Pires, L.A.; Hegg, R.; Valduga, C.J.; Graziani, S.R.; Rodrigues, D.G.; Maranh?o, R.C. Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: Pharmacokinetics, tumor uptake and a pilot clinical study. Cancer Chemother. Pharmacol. 2009, 63, 281–287, doi:10.1007/s00280-008-0738-2. 18365196
[75]  Saha, R.N.; Vasanthakumar, S.; Bende, G.; Snehalatha, M. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol. Membr. Biol. 2010, 27, 215–231, doi:10.3109/09687688.2010.510804. 20939772
[76]  Kong, B.; Seog, J.H.; Graham, L.M.; Lee, S.B. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine (Lond) 2011, 6, 929–941, doi:10.2217/nnm.11.77.
[77]  Stensberg, M.C.; Wei, Q.; McLamore, E.; Porterfield, D.M.; Wei, A.; Sepúlveda, M.S. Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond) 2011, 6, 879–898, doi:10.2217/nnm.11.78.
[78]  Maranh?o, R.C.; Graziani, S.R.; Yamaguchi, N.; Melo, R.F.; Latrilha, M.C.; Rodrigues, D.G.; Couto, R.D.; Schreier, S.; Buzaid, A.C. Association of carmustine with a lipid emulsion: In vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother. Pharmacol. 2002, 49, 487–498, doi:10.1007/s00280-002-0437-3.
[79]  Teixeira, R.S.; Curi, R.; Maranh?o, R.C. Effects on Walker 256 tumour of carmustine associated with a cholesterol-rich microemulsion (LDE). J. Pharm. Pharmacol. 2004, 56, 909–914, doi:10.1211/0022357023826. 15233870
[80]  Escobar, E.R.; Cheruvu, N.P.; Zhan, G.; Toris, C.B.; Kompella, U.B. Subconjunctival budesonide and budesonide poly-(lactide) microparticles do not elevate intraocular pressure or induce lens opacities in rabbit model. Invest. Ophthalmol. Vis. Sci. 2006, 47, 4493.
[81]  Amrite, A.C.; Ayalasomayajula, S.P.; Cheruvu, N.P.; Kompella, U.B. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest. Ophthalmol. Vis. Sci. 2006, 47, 1149–1160, doi:10.1167/iovs.05-0531.
[82]  Georgoulas, S.; Dahlmann-Noor, A.; Brocchini, S.; Khaw, P.T. Ocular Disease Mechanism and Management; Levin, L.A., Albert, D.M., Eds.; Saunders Elsevier: Maryland Heights, MO, USA, 2010; pp. 214–222.
[83]  Naumann, G.O.H.; Kruse, F.E. Applied Pathology for Ophthalmic Microsurgeons; Naumann, G.O.H., Holbach, L., Kruse, F.E., Eds.; Springer: Heildelberg, Germany, 2008; pp. 76–96.
[84]  Kosaka, T.; Mishima, H.K.; Kiuchi, Y.; Kataoka, K. The effects of prostaglandins on the blood-ocular barrier. Jpn. J. Ophthalmol. 1995, 39, 368–376. 8926644
[85]  Cho, H.; Madu, A. Etiology and treatment of the inflammatory causes of cystoid macular edema. J. Inflamm. Res. 2009, 2, 37–43. 22096351
[86]  Chang, L.; Crowston, J.G.; Cordeiro, M.F.; Akbar, A.N.; Khaw, P.T. The role of the immune system in conjunctival wound healing after glaucoma surgery. Surv. Ophthalmol. 2000, 45, 49–68, doi:10.1016/S0039-6257(00)00135-1. 10946081
[87]  Gaudio, P.A. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul. Immunol. Inflamm. 2004, 12, 169–192, doi:10.1080/092739490500192. 15385194
[88]  Hart, W. The Glaucomas; Ritch, R., Shields, M.B., Krupin, T., Eds.; Mosby: St. Louis, MO, USA, 1989; pp. 789–795.
[89]  Hodkin, M.; Goldblatt, W.; Burgoyne, C.; Ball, S.F.; Insler, M.S. Early clinical experience with the Baerveldt implant in complicated glaucomas. Am. J. Ophthalmol. 1995, 102, 32–40.
[90]  Siegner, S.W.; Netland, P.A.; Urban, R.C.; Williams, A.S.; Richards, D.W.; Latina, M.A.; Brandt, J.D. Clinical experience with the Baerveldt glaucoma drainage implant. Ophthalmology 1995, 102, 1298–1307. 9097766
[91]  Singh, K.; Byrd, S.; Egbert, P.R.; Budenz, D. Risk of hypotony after primary trabeculectomy with antifibrotic agents in a black west African population. J. Glaucoma 1998, 7, 82–85. 9559492
[92]  Morinelli, E.N.; Sidoti, P.A.; Heuer, D.K.; Minckler, D.S.; Baerveldt, G.; LaBree, L.; Lee, P.P. Laser suture lysis after mitomycin C trabeculectomy. Ophthalmology 1996, 103, 306–314. 8594519
[93]  Leydheeker, W.; Akiyama, K.; Neumann, H.G. Intraocular pressure in normal human eyes. Augen Klin Monatsbl Augenheilkd 1958, 133, 662–670.
[94]  Raamakrishnan, R.; Michon, J.; Robin, A.; Krishnada, S.R. Safety and efficacy of mitomycin C trabeculectomy in Southern India. Ophthalmology 1993, 100, 1619–1623. 8233385
[95]  Schubert, H.D. Postsurgical hypotony: Relationship to fistulization, inflammation, chorioretinal lesions, and the vitreous. Surv. Ophthalmol. 1996, 41, 97–125, doi:10.1016/S0039-6257(96)80001-4.
[96]  Weikert, M.P. Update on bimanual microincisional cataract surgery. Curr. Opin. Ophthalmol. 2006, 17, 62–67. 16436926
[97]  Trivedi, D.; Denniston, A.K.; Murray, P.I. Safety profile of anterior chamber paracentesis performed at the slit lamp. Clin. Exp. Ophthalmol. 2011, 39, 725–728, doi:10.1111/j.1442-9071.2011.02565.x.
[98]  Lam, D.S.; Chua, J.K.; Tham, C.C.; Lai, J.S. Efficacy and safety of immediate anterior chamber paracentesis in the treatment of acute primary angle-closure glaucoma: A pilot study. Ophthalmology 2002, 109, 64–70, doi:10.1016/S0161-6420(01)00857-0. 11772581
[99]  Carnahan, M.C.; Platt, L.W. Serial paracenteses in the management of acute elevations of intraocular pressure. Ophthalmology 2002, 109, 1604–1606, doi:10.1016/S0161-6420(02)01126-0. 12208705
[100]  Arnavielle, S.; Creuzot-Garcher, C.; Bron, A.M. Anterior chamber paracentesis in patients with acute elevation of intraocular pressure. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 345–350, doi:10.1007/s00417-006-0465-5. 17111147
[101]  Kim, H.C.; Hayashi, A.; Shalash, A; de Juan, E., Jr. A model of chronic hypotony in the rabbit. Graefes Arch. Clin. Exp. Ophthalmol. 1998, 236, 69–74, doi:10.1007/s004170050045.
[102]  Fine, H.F.; Biscette, O.; Chang, S.; Schiff, W.M. Ocular hypotony: A review. Compr. Ophthalmol. Update 2007, 8, 29–37. 17394757
[103]  Nussenblatt, R.B.; Gery, I.; Ballintine, E.J.; Wacker, W.B. Cellular immune responsiveness of uveitis patients to retinal S-antigen. Am. J. Ophthalmol. 1980, 89, 173–179. 7355973
[104]  Ham, D.I.; Gentleman, S.; Chan, C.C.; McDowell, J.H.; Redmond, T.M.; Gery, I. RPE65 is highly uveitogenic in rats. Invest. Ophthalmol. Vis. Sci. 2002, 43, 2258–2263. 12091425
[105]  Broekhuyse, R.M.; Winkens, H.J.; Kuhlmann, E.D. Induction of experimental autoimmune uveoretinitis and pinealitis by IRBP. Comparison to uveoretinitis induced by S-antigen and opsin. Curr. Eye Res. 1986, 5, 231–240, doi:10.3109/02713688609020048.
[106]  Chan, C.C.; Nussenblatt, R.B.; Wiggert, B.; Redmond, T.M.; Fujikawa, L.S.; Chader, G.J.; Gery, I. Immunohistochemical analysis of experimental autoimmune uveoretinitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP) in the rat. Immunol. Invest. 1987, 16, 63–74, doi:10.3109/08820138709055713. 3497100
[107]  Nussenblatt, R.B.; Rodrigues, M.M.; Wacker, W.B.; Nussenblatt, R.B.; Rodrigues, M.M.; Wacker, W.B.; Cevario, S.J.; Salinas-Carmona, M.C.; Gery, I. Cyclosporin a. Inhibition of experimental autoimmune uveitis in Lewis rats. J. Clin. Invest. 1981, 67, 1228–1231, doi:10.1172/JCI110138.
[108]  Boyd, S.R.; Young, S.; Lightman, S. Immunopathology of the noninfectious posterior and intermediate uveitis. Surv. Ophthalmol. 2001, 46, 209–233, doi:10.1016/S0039-6257(01)00275-2. 11738429
[109]  Whitcup, S.M.; Nussenblatt, R.B. Immunologic mechanisms of uveitis. New targets for immunomodulation. Arch. Ophthalmol. 1997, 115, 520–525, doi:10.1001/archopht.1997.01100150522013.
[110]  Foxman, E.F.; Zhang, M.; Hurst, S.D.; Muchamuel, T.; Shen, D.; Wawrousek, E.F.; Chan, C.C.; Gery, I. Inflammatory mediators in uveitis: Differentieal induction of cytokines and chemokines in Th1- versus Th2-mediated ocular inflammation. J. Immunol. 2002, 168, 2483–2492. 11859142
[111]  Limb, G.A.; Soomro, H.; Janikoun, S.; Hollifield, R.D.; Shilling, J. Evidence for control of tumor necrosis factor-alpha (TNF-α) activity by TNF receptors in patients with proliferative diabetic retinopathy. Clin. Exp. Immunol. 1999, 115, 409–414, doi:10.1046/j.1365-2249.1999.00839.x. 10193411
[112]  Huang, H.; Gandhi, J.K.; Zhong, X.; Wei, Y.; Gong, J.; Duh, E.J.; Vinores, S.A. TNFα is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest. Ophthalmol. Vis. Sci. 2011, 52, 1336–1344, doi:10.1167/iovs.10-5768. 21212173
[113]  Rowland, F.N.; Donovan, M.J.; Lindsay, M.; Weiss, W.I.; O’Rourke, J.; Kreutzer, D.L. Demonstration of inflammatory mediator-induced inflammation and endothelial cell damage in the anterior segment of the eye. Am. J. Ophthalmol. 1982, 110, 1–12.
[114]  Ben-Zvi, A.; Rodrigues, M.M.; Gory, I.; Schiffmann, E. Induction of ocular inflammation by synthetic mediators. Arch. Ophthalmol. 1981, 99, 1436–1444, doi:10.1001/archopht.1981.03930020310024. 6455114
[115]  Miyake, K.; Kayazawa, F.; Manabe, R.; Miyake, Y. Indomethacin and the epinephrine-induced breakdown of the blood-ocular barrier in rabbits. Invest. Ophthalmol. Vis. Sci. 1987, 28, 482–486. 3557860
[116]  Elliot, P.J.; Mackic, J.B.; Graney, W.F.; Bartus, R.T.; Zlokovic, B.V. RMP-7, a bradykinin agonist, increases permeability of blood-ocular barriers in the guinea pig. Invest. Ophthalmol. Vis. Sci. 1995, 36, 2542–2547. 7591644
[117]  Deng, X.; Zhang, Q.; Hu, S.; Gao, Y.; Yan, L. Pharmacokinetics of puerarin in the aqueous humor and vitreous of rabbit eye following systemic administration. Yan Ke Xue Bao 2006, 22, 275–279. 17378162
[118]  Copland, D.A.; Liu, J.; Schewitz-Bowers, L.P.; Brinkmann, V.; Anderson, K.; Nicholson, L.B.; Dick, A.D. Therapeutic dosing of fingolimod (FTY720) prevents cell infiltration, rapidly suppresses ocular inflammation, and maintains the blood-ocular barrier. Am. J. Pathol. 2011, 180, 672–681. 22119714
[119]  Oshika, T.; Araie, M.; Masuka, K. Diurnal variation of aqueous flare in normal human eyes measured with laser flare-cell meter. Jpn. J. Ophthalmol. 1988, 32, 143–150. 2460653
[120]  Sawa, M. Clinical application of laser flare-cell meter. Jpn. J. Ophthalmol. 1990, 34, 346–363. 2079779
[121]  Küchle, M.; Hannappel, E.; Nguyen, N.X.; Ho, S.T.; Beck, W.; Naumann, G.O. Correlation between tyndallometry with the “laser flare cell meter” in vivo and biochemical protein determination in human aqueous humor. Klin. Monbl. Augenheilkd. 1993, 202, 14–18, doi:10.1055/s-2008-1045553.
[122]  Küchle, M. Laser tyndallometry in anterior segment diseases. Curr. Opin. Ophthalmol. 1994, 5, 110–116. 10172409
[123]  Tugal-Tutkin, I.; Herbort, C.P. Laser flare photometry: A noninvasive, objective, and quantitative method to measure intraocular inflammation. Int. Ophthalmol. 2010, 30, 453–464, doi:10.1007/s10792-009-9310-2.
[124]  Naumann, G.O.; Schl?tzer-Schrehardt, U.; Küchle, M. Pseudoexfoliation syndrome for the comprehensive ophthalmologist. Intraocular and systemic manifestations. Ophthalmology 1998, 105, 951–968, doi:10.1016/S0161-6420(98)96020-1.
[125]  Chen, M.S.; Hou, P.K.; Tai, T.Y.; Lin, B.J. Blood-ocular barriers. Tzu Chi Med. J. 2008, 20, 25–34, doi:10.1016/S1016-3190(08)60004-X.
[126]  Lund-Andersen, H.; Krogsaa, B.; la Cour, M.; Larsen, J. Quantitative vitreous fluorophotometruy applying a mathematical model of the eye. Invest. Ophthalmol. Vis. Sci. 1985, 26, 698–710. 3997419
[127]  Larsen, M. Ocular fluorometry methodological improvements and clinical studies with special reference to the blood-retina barrier permeability to fluorescein and fluorescein glucuronide. Acta Ophthalmol. Suppl. 1993, 211, 1–52. 8318868
[128]  Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-retinal barrier. Eur. J. Ophthalmol. 2010, 21, 3–9.
[129]  Lu, V.H.; Ho, I.V.; Lee, V.; Hunyor, A.P. Complications from fluorescein angiography: A prospective study. Clin. Exp. Ophthalmol. 2009, 37, 826–827.
[130]  Metrikin, D.C.; Wilson, C.A.; Berkowitz, B.A.; Lam, M.K.; Wood, G.K.; Peshock, R.M. Measurement of blood-retinal barrier breakdown in endotoxin-induced endophthalmitis. Invest. Ophthalmol. Vis. Sci. 1995, 36, 1361–1370. 7775114
[131]  Li, S.K.; Lisak, M.J.; Jeong, E.K. MRI in ocular drug delivery. NMR Biomed. 2008, 21, 941–956, doi:10.1002/nbm.1230. 18186077
[132]  Cunha-Vaz, J.G. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp. Eye Res. 2004, 78, 715–721, doi:10.1016/S0014-4835(03)00213-6.
[133]  del Amo, E.M.; Urtti, A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov. Today 2008, 13, 135–143, doi:10.1016/j.drudis.2007.11.002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133