全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Parameterized Complexity of Probabilistic Inference in Ising Graphical Model
Ising图模型概率推理的参数化复杂性

Keywords: Ising graphical model,Probabilistic inference,Ising mean field,Parameterized complexity,Fixed parameter tractable
Ising图模型,概率推理,Icing均值场,参数化复杂性,固定参数可处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

Probabilistic inference of the Ising graphical model is to compute the partition function and the marginal probabilistic distribution through summing variables. Traditional computational complexity theory shows that the exact probabilistic inference of the Ising graphical model is#P-hard, and the approximate probabilistic inference is NP-hard.We analyzed the parameterized complexities of exact probabilistic inference of the Ising graphical model and the Ising mean field approximate inference. First, we proved the parameterized complexity theorems of probabilistic inference of the Ising graphical model with different parameters, which show that parameterized probabilistic inferences arc fixed parameter tractable with the variable number and the graphical model treewidth as parameters respectively. Then, we proved the parameterized complexity theorems of the Ising mean field, which demonstrate that the parameterized Ising mean field is fixed parameter tractable with the combination of the free distribution treewidth, the number of iteration steps and the number of variables as parameter; furthermore, when the Ising graphical model parameters satisfy the contraction condition of the Ising mean field iteration formula, the parameterized Ising mean field is fixed parameter tractable with the combination of the free distribution treewidth and the number of iteration steps as parameter.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133