全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2010 

Synthesis of Ethylene Glycol Dimethacrylate-Methyl Methacrylate Copolymers, Determination of their Reactivity Ratios, and a Study of Dopant and Temperature Effects on their Conductivities

DOI: 10.3390/polym2030265

Keywords: conductivity, dopant, copolymer, reactivity ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ultraviolet radiation was used as a photochemical initiator to synthesize ethylene glycol dimethacrylate-methyl methacrylate copolymers. Infrared spectroscopy was used to calculate reactivity ratios and to identify the type of copolymerization. The reactivity ratios of EGDMA and MMA were calculated as 0.6993 and 1.8635, respectively. The effect of lithium perchlorate as a dopant on copolymer conductivity and conversion was studied. The addition of dopant increased the conductivity of copolymers. For copolymers containing 5% MMA in the feed, dopant increased conductivity about 775 times; when the MMA percentage was 20% in the feed, dopant increased conductivity about 100 times. As MMA percentage increases in the copolymer, the conductivity values decrease from the mS to the μS region. This is consistent with the fact that PMMA has a lower conductivity than PEGDMA. The conductivity change of homopolymers and copolymers at various temperatures were studied. Both MMA and EGDMA polymers and their copolymers show a minimum in their conductivity vs. temperature graphs, indicating that they first act as a conductor and after a minimum temperature, become semiconductors and can be used to control current in electrical devices by temperature change. The measurement of conductivity change with time provided a new way to follow the kinetics of polymer/dopant reactions. The activation energy of interaction with dopant was calculated as 31.52 kJ/mol for MMA/EGDMA copolymers; for PEGDMA alone it was 54.7 kJ/mol.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133