全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Expanding the Antimalarial Drug Arsenal—Now, But How?

DOI: 10.3390/ph4050681

Keywords: malaria, falciparum, artemisinin resistance, natural products, drug discovery, kinases, HDAC, DHODH

Full-Text   Cite this paper   Add to My Lib

Abstract:

The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/ dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i) re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii) repurposing drugs that are currently used to treat other infections or diseases; (iii) chemically modifying existing antimalarial compounds; (iv) exploring natural sources; (v) large-scale screening of diverse chemical libraries; and (vi) through parasite genome-based (“targeted”) discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum), and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs), and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into “short term” (4. Feasible options for now) and “long term” (5. Next generation of antimalarial treatment—Approaches and candidates). However, these two categories are interrelated, and the approaches in both should be implemented in parallel with focus on developing a successful, long-lasting antimalarial chemotherapy.

References

[1]  Bates, I.; Fenton, C.; Gruber, J.; Lalloo, D.; Medina Lara, A.; Squire, S.B.; Theobald, S.; Thomson, R.; Tolhurst, R. Vulnerability to malaria, tuberculosis, and HIV/AIDS infection and disease. Part 1: Determinants operating at individual and household level. Lancet Infect. Dis.?2004, 4, 267–277.
[2]  Stratton, L.; O'Neill, M.S.; Kruk, M.E.; Bell, M.L. The persistent problem of malaria: Addressing the fundamental causes of a global killer. Soc. Sci. Med.?2008, 67, 854–862.
[3]  WHO. World Malaria Report 2010. http://www.who.int/malaria/world_malaria_report_2010/en/index.html/ (accessed 26 December 2010).
[4]  Roca-Feltrer, A.; Carneiro, I.; Armstrong Schellenberg, J.R. Estimates of the burden of malaria morbidity in Africa in children under the age of 5 years. Trop. Med. Int. Health?2008, 13, 771–783.
[5]  Rogerson, S.J. Malaria in pregnancy and the newborn. Adv. Exp. Med. Biol.?2010, 659, 139–152.
[6]  Schantz-Dunn, J.; Nour, N.M. Malaria and pregnancy: A global health perspective. Rev. Obstet. Gynecol.?2009, 2, 186–192.
[7]  Krogstad, D.J. Malaria. In Tropical Infectious Diseases-Principles, Pathogens, & Practice; Guerrant, R.L., Walker, D.H., Weller, P.F., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 1999; Volume 1, pp. 736–766.
[8]  Service, M.; Townson, H. The anopheles vector. In Essential Malariology; Gilles, H., Warrell, D.A., Eds.; Arnold: London, UK, 2002; pp. 59–84.
[9]  Gurarie, D.; Zimmerman, P.A.; King, C.H. Dynamic regulation of single- and mixed-species malaria infection: Insights to specific and non-specific mechanisms of control. J. Theor. Biol.?2006, 240, 185–199.
[10]  Mayxay, M.; Pukrittayakamee, S.; Newton, P.N.; White, N.J. Mixed-species malaria infections in humans. Trends Parasitol.?2004, 20, 233–240.
[11]  Zimmerman, P.A.; Mehlotra, R.K.; Kasehagen, L.J.; Kazura, J.W. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol.?2004, 20, 440–447.
[12]  Baird, J.K. Neglect of Plasmodium vivax malaria. Trends Parasitol.?2007, 23, 533–539.
[13]  Price, R.N.; Tjitra, E.; Guerra, C.A.; Yeung, S.; White, N.J.; Anstey, N.M. Vivax malaria: Neglected and not benign. Am. J. Trop. Med. Hyg.?2007, 77 Suppl.6, 79–87.
[14]  Greenwood, B.M.; Fidock, D.A.; Kyle, D.E.; Kappe, S.H.; Alonso, P.L.; Collins, F.H.; Duffy, P.E. Malaria: Progress, perils, and prospects for eradication. J. Clin. Invest.?2008, 118, 1266–1276.
[15]  Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol.?2000, 45, 371–391.
[16]  Girard, M.P.; Reed, Z.H.; Friede, M.; Kieny, M.P. A review of human vaccine research and development: Malaria. Vaccine?2007, 25, 1567–1580.
[17]  Schlitzer, M. Antimalarial drugs—What is in use and what is in the pipeline. Arch. Pharm. (Weinheim)?2008, 341, 149–163.
[18]  White, N.J. Qinghaosu (artemisinin): The price of success. Science?2008, 320, 330–334.
[19]  Wernsdorfer, W.H.; Payne, D. The dynamics of drug resistance in Plasmodium falciparum. Pharmacol. Ther.?1991, 50, 95–121.
[20]  Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed. Engl.?2003, 42, 5274–5293.
[21]  Croft, A.M. A lesson learnt: The rise and fall of Lariam and Halfan. JR Soc. Med.?2007, 100, 170–174.
[22]  Luzzatto, L. The rise and fall of the antimalarial Lapdap: A lesson in pharmacogenetics. Lancet?2010, 376, 739–741.
[23]  WHO. The use of antimalarial drugs: Report of an informal consultation (WHO/CDS/RBM/2001.33). http://rbm.who.int/cmc_upload/0/000/014/923/am_toc.htm/ (accessed 23 November 2010).
[24]  Bosman, A.; Mendis, K.N. A major transition in malaria treatment: The adoption and deployment of artemisinin-based combination therapies. Am. J. Trop. Med. Hyg.?2007, 77 Suppl.6, 193–197.
[25]  Hastings, I. How artemisinin-containing combination therapies slow the spread of antimalarial drug resistance. Trends Parasitol.?2010, doi:10.1016/j.pt.2010.09.005.
[26]  Musset, L.; Bouchaud, O.; Matheron, S.; Massias, L.; Le Bras, J. Clinical atovaquone-proguanil resistance of Plasmodium falciparum associated with cytochrome b codon 268 mutations. Microbes Infect.?2006, 8, 2599–2604.
[27]  Hyde, J.E. Drug-resistant malaria. Trends Parasitol.?2005, 21, 494–498.
[28]  Hayton, K.; Su, X.Z. Genetic and biochemical aspects of drug resistance in malaria parasites. Curr. Drug Targets Infect. Disord.?2004, 4, 1–10.
[29]  Hyde, J.E. Drug-resistant malaria—An insight. FEBS J.?2007, 274, 4688–4698.
[30]  Ekland, E.H.; Fidock, D.A. Advances in understanding the genetic basis of antimalarial drug resistance. Curr. Opin Microbiol.?2007, 10, 363–370.
[31]  Kidgell, C.; Winzeler, E.A. Using the genome to dissect the molecular basis of drug resistance. Future Microbiol.?2006, 1, 185–199.
[32]  Valderramos, S.G.; Fidock, D.A. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol. Sci.?2006, 27, 594–601.
[33]  Mehlotra, R.K.; Henry-Halldin, C.N.; Zimmerman, P.A. Application of pharmacogenomics to malaria: A holistic approach for successful chemotherapy. Pharmacogenomics?2009, 10, 435–449.
[34]  Meshnick, S.R.; Taylor, T.E.; Kamchonwongpaisan, S. Artemisinin and the antimalarial endoperoxides: From herbal remedy to targeted chemotherapy. Microbiol. Rev.?1996, 60, 301–315.
[35]  Teuscher, F.; Gatton, M.L.; Chen, N.; Peters, J.; Kyle, D.E.; Cheng, Q. Artemisinin-induced dormancy in Plasmodium falciparum: Duration, recovery rates, and implications in treatment failure. J. Infect. Dis.?2010, 202, 1362–1368.
[36]  Witkowski, B.; Lelievre, J.; Barragan, M.J.; Laurent, V.; Su, X.Z.; Berry, A.; Benoit-Vical, F. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob. Agents Chemother.?2010, 54, 1872–1877.
[37]  Enserink, M. Malaria's drug miracle in danger. Science?2010, 328, 844–846.
[38]  Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med.?2009, 361, 455–467.
[39]  Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med.?2008, 359, 2619–2620.
[40]  Anderson, T.J.; Nair, S.; Nkhoma, S.; Williams, J.T.; Imwong, M.; Yi, P.; Socheat, D.; Das, D.; Chotivanich, K.; Day, N.P.; et al. High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia. J. Infect. Dis.?2010, 201, 1326–1330.
[41]  Cui, L.; Su, X.Z. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti-Infect. Ther.?2009, 7, 999–1013.
[42]  O'Neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin—The debate continues. Molecules?2010, 15, 1705–1721.
[43]  Eckstein-Ludwig, U.; Webb, R.J.; Van Goethem, I.D.; East, J.M.; Lee, A.G.; Kimura, M.; O'Neill, P.M.; Bray, P.G.; Ward, S.A.; Krishna, S. Artemisinins target the SERCA of Plasmodium falciparum. Nature?2003, 424, 957–961.
[44]  Imwong, M.; Dondorp, A.M.; Nosten, F.; Yi, P.; Mungthin, M.; Hanchana, S.; Das, D.; Phyo, A.P.; Lwin, K.M.; Pukrittayakamee, S.; et al. Exploring the contribution of candidate genes to artemisinin resistance in Plasmodium falciparum. Antimicrob. Agents Chemother.?2010, 54, 2886–2892.
[45]  Dondorp, A.M.; Yeung, S.; White, L.; Nguon, C.; Day, N.P.; Socheat, D.; von Seidlein, L. Artemisinin resistance: Current status and scenarios for containment. Nat. Rev. Microbiol.?2010, 8, 272–280.
[46]  Olliaro, P.; Wells, T.N. The global portfolio of new antimalarial medicines under development. Clin. Pharmacol. Ther.?2009, 85, 584–595.
[47]  Laufer, M.K.; Thesing, P.C.; Eddington, N.D.; Masonga, R.; Dzinjalamala, F.K.; Takala, S.L.; Taylor, T.E.; Plowe, C.V. Return of chloroquine antimalarial efficacy in Malawi. N. Engl. J. Med.?2006, 355, 1959–1966.
[48]  Zhou, Z.; Griffing, S.M.; de Oliveira, A.M.; McCollum, A.M.; Quezada, W.M.; Arrospide, N.; Escalante, A.A.; Udhayakumar, V. Decline in sulfadoxine-pyrimethamine-resistant alleles after change in drug policy in the Amazon region of Peru. Antimicrob. Agents Chemother.?2008, 52, 739–741.
[49]  Walliker, D.; Hunt, P.; Babiker, H. Fitness of drug-resistant malaria parasites. Acta Trop.?2005, 94, 251–259.
[50]  Kublin, J.G.; Cortese, J.F.; Njunju, E.M.; Mukadam, R.A.; Wirima, J.J.; Kazembe, P.N.; Djimde, A.A.; Kouriba, B.; Taylor, T.E.; Plowe, C.V. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J. Infect. Dis.?2003, 187, 1870–1875.
[51]  Laufer, M.K.; Takala-Harrison, S.; Dzinjalamala, F.K.; Stine, O.C.; Taylor, T.E.; Plowe, C.V. Return of chloroquine-susceptible falciparum malaria in Malawi was a reexpansion of diverse susceptible parasites. J. Infect. Dis.?2010, 202, 801–808.
[52]  Mita, T.; Kaneko, A.; Lum, J.K.; Zungu, I.L.; Tsukahara, T.; Eto, H.; Kobayakawa, T.; Bjorkman, A.; Tanabe, K. Expansion of wild type allele rather than back mutation in pfcrt explains the recent recovery of chloroquine sensitivity of Plasmodium falciparum in Malawi. Mol. Biochem. Parasitol.?2004, 135, 159–163.
[53]  Mwai, L.; Ochong, E.; Abdirahman, A.; Kiara, S.M.; Ward, S.; Kokwaro, G.; Sasi, P.; Marsh, K.; Borrmann, S.; Mackinnon, M.; et al. Chloroquine resistance before and after its withdrawal in Kenya. Malar. J.?2009, 8, 106.
[54]  Chen, N.; Gao, Q.; Wang, S.; Wang, G.; Gatton, M.; Cheng, Q. No genetic bottleneck in Plasmodium falciparum wild-type Pfcrt alleles reemerging in Hainan Island, China, following high-level chloroquine resistance. Antimicrob. Agents Chemother.?2008, 52, 345–347.
[55]  Wang, X.; Mu, J.; Li, G.; Chen, P.; Guo, X.; Fu, L.; Chen, L.; Su, X.; Wellems, T.E. Decreased prevalence of the Plasmodium falciparum chloroquine resistance transporter 76T marker associated with cessation of chloroquine use against P. falciparum malaria in Hainan, People's Republic of China. Am. J. Trop. Med. Hyg.?2005, 72, 410–414.
[56]  McCollum, A.M.; Mueller, K.; Villegas, L.; Udhayakumar, V.; Escalante, A.A. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine-pyrimethamine resistance in a low-transmission area in South America. Antimicrob. Agents Chemother.?2007, 51, 2085–2091.
[57]  Khim, N.; Bouchier, C.; Ekala, M.T.; Incardona, S.; Lim, P.; Legrand, E.; Jambou, R.; Doung, S.; Puijalon, O.M.; Fandeur, T. Countrywide survey shows very high prevalence of Plasmodium falciparum multilocus resistance genotypes in Cambodia. Antimicrob. Agents Chemother.?2005, 49, 3147–3152.
[58]  Ginsburg, H. Should chloroquine be laid to rest? Acta Trop.?2005, 96, 16–23.
[59]  Martin, S.K.; Oduola, A.M.; Milhous, W.K. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science?1987, 235, 899–901.
[60]  Egan, T.J.; Kaschula, C.H. Strategies to reverse drug resistance in malaria. Curr. Opin. Infect. Dis.?2007, 20, 598–604.
[61]  Guantai, E.; Chibale, K. Chloroquine resistance: Proposed mechanisms and countermeasures. Curr. Drug Deliv.?2010, 7, 312–323.
[62]  Henry, M.; Alibert, S.; Orlandi-Pradines, E.; Bogreau, H.; Fusai, T.; Rogier, C.; Barbe, J.; Pradines, B. Chloroquine resistance reversal agents as promising antimalarial drugs. Curr. Drug Targets?2006, 7, 935–948.
[63]  van Schalkwyk, D.A.; Egan, T.J. Quinoline-resistance reversing agents for the malaria parasite Plasmodium falciparum. Drug Resist. Updat.?2006, 9, 211–226.
[64]  Ward, S.A.; Bray, P.G. Is reversal of chloroquine resistance ready for the clinic? Lancet?2001, 357, 904.
[65]  Sendagire, H.; Kaddumukasa, M.; Ndagire, D.; Aguttu, C.; Nassejje, M.; Pettersson, M.; Swedberg, G.; Kironde, F. Rapid increase in resistance of Plasmodium falciparum to chloroquine-Fansidar in Uganda and the potential of amodiaquine-Fansidar as a better alternative. Acta Trop.?2005, 95, 172–182.
[66]  Wootton, D.G.; Opara, H.; Biagini, G.A.; Kanjala, M.K.; Duparc, S.; Kirby, P.L.; Woessner, M.; Neate, C.; Nyirenda, M.; Blencowe, H.; et al. Open-label comparative clinical study of chlorproguanil-dapsone fixed dose combination (Lapdap) alone or with three different doses of artesunate for uncomplicated Plasmodium falciparum malaria. PLoS One?2008, 3, e1779.
[67]  Price, R.N.; Dorsey, G.; Ashley, E.A.; Barnes, K.I.; Baird, J.K.; d'Alessandro, U.; Guerin, P.J.; Laufer, M.K.; Naidoo, I.; Nosten, F.; et al. World Antimalarial Resistance Network I: Clinical efficacy of antimalarial drugs. Malar. J.?2007, 6, 119.
[68]  Schlagenhauf, P.; Adamcova, M.; Regep, L.; Schaerer, M.T.; Rhein, H.G. The position of mefloquine as a 21st century malaria chemoprophylaxis. Malar. J.?2010, 9, 357.
[69]  Dow, G.; Bauman, R.; Caridha, D.; Cabezas, M.; Du, F.; Gomez-Lobo, R.; Park, M.; Smith, K.; Cannard, K. Mefloquine induces dose-related neurological effects in a rat model. Antimicrob. Agents Chemother.?2006, 50, 1045–1053.
[70]  Dow, G.S.; Caridha, D.; Goldberg, M.; Wolf, L.; Koenig, M.L.; Yourick, D.L.; Wang, Z. Transcriptional profiling of mefloquine-induced disruption of calcium homeostasis in neurons in vitro. Genomics?2005, 86, 539–550.
[71]  Nevin, R.L.; Pietrusiak, P.P.; Caci, J.B. Prevalence of contraindications to mefloquine use among USA military personnel deployed to Afghanistan. Malar. J.?2008, 7, 30.
[72]  DoD. Policy memorandum on the use of mefloquine (LariamR) in malaria prophylaxis. http://www.lariaminfo.org/pdfs/policy-memo-secy-defense%20malaria-prophylaxis.pdf (accessed 1 April 2011).
[73]  Shanks, G.D.; Oloo, A.J.; Aleman, G.M.; Ohrt, C.; Klotz, F.W.; Braitman, D.; Horton, J.; Bruekner, R. A new primaquine analogue, tafenoquine (WR 238605), for prophylaxis against Plasmodium falciparum malaria. Clin. Infect. Dis.?2001, 33, 1968–1974.
[74]  Walsh, D.S.; Looareesuwan, S.; Wilairatana, P.; Heppner, D.G., Jr; Tang, D.B.; Brewer, T.G.; Chokejindachai, W.; Viriyavejakul, P.; Kyle, D.E.; Milhous, W.K.; et al. Randomized dose-ranging study of the safety and efficacy of WR 238605 (Tafenoquine) in the prevention of relapse of Plasmodium vivax malaria in Thailand. J. Infect. Dis.?1999, 180, 1282–1287.
[75]  Dutta, G.P.; Puri, S.K. New antimalarial drug development in india: radical curative agents CDRI 80/53 (Elubaquine) and WR 238605 (Tafenoquine). Proc. Indian Nat. Sci. Acad.?2003, B69, 871–882.
[76]  Crockett, M.; Kain, K.C. Tafenoquine: A promising new antimalarial agent. Exp. Opin. Invest. Drugs?2007, 16, 705–715.
[77]  Elmes, N.J.; Nasveld, P.E.; Kitchener, S.J.; Kocisko, D.A.; Edstein, M.D. The efficacy and tolerability of three different regimens of tafenoquine versus primaquine for post-exposure prophylaxis of Plasmodium vivax malaria in the Southwest Pacific. Trans. R Soc. Trop. Med. Hyg.?2008, 102, 1095–1101.
[78]  Nasveld, P.E.; Edstein, M.D.; Reid, M.; Brennan, L.; Harris, I.E.; Kitchener, S.J.; Leggat, P.A.; Pickford, P.; Kerr, C.; Ohrt, C.; et al. Randomized, double-blind study of the safety, tolerability, and efficacy of tafenoquine versus mefloquine for malaria prophylaxis in nonimmune subjects. Antimicrob. Agents Chemother.?2010, 54, 792–798.
[79]  Khoo, S.; Back, D.; Winstanley, P. The potential for interactions between antimalarial and antiretroviral drugs. Aids?2005, 19, 995–1005.
[80]  Skinner-Adams, T.S.; McCarthy, J.S.; Gardiner, D.L.; Andrews, K.T. HIV and malaria co-infection: Interactions and consequences of chemotherapy. Trends Parasitol.?2008, 24, 264–271.
[81]  Skinner-Adams, T.S.; McCarthy, J.S.; Gardiner, D.L.; Hilton, P.M.; Andrews, K.T. Antiretrovirals as antimalarial agents. J. Infect. Dis.?2004, 190, 1998–2000.
[82]  Parikh, S.; Gut, J.; Istvan, E.; Goldberg, D.E.; Havlir, D.V.; Rosenthal, P.J. Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob. Agents Chemother.?2005, 49, 2983–2985.
[83]  Peatey, C.L.; Andrews, K.T.; Eickel, N.; MacDonald, T.; Butterworth, A.S.; Trenholme, K.R.; Gardiner, D.L.; McCarthy, J.S.; Skinner-Adams, T.S. Antimalarial asexual stage-specific and gametocytocidal activities of HIV protease inhibitors. Antimicrob. Agents Chemother.?2010, 54, 1334–1337.
[84]  Andrews, K.T.; Fairlie, D.P.; Madala, P.K.; Ray, J.; Wyatt, D.M.; Hilton, P.M.; Melville, L.A.; Beattie, L.; Gardiner, D.L.; Reid, R.C.; et al. Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Antimicrob. Agents Chemother.?2006, 50, 639–648.
[85]  Parikh, S.; Liu, J.; Sijwali, P.; Gut, J.; Goldberg, D.E.; Rosenthal, P.J. Antimalarial effects of human immunodeficiency virus type 1 protease inhibitors differ from those of the aspartic protease inhibitor pepstatin. Antimicrob. Agents Chemother.?2006, 50, 2207–2209.
[86]  Skinner-Adams, T.S.; Andrews, K.T.; Melville, L.; McCarthy, J.; Gardiner, D.L. Synergistic interactions of the antiretroviral protease inhibitors saquinavir and ritonavir with chloroquine and mefloquine against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother.?2007, 51, 759–762.
[87]  Janssen, P.A.; Lewi, P.J.; Arnold, E.; Daeyaert, F.; de Jonge, M.; Heeres, J.; Koymans, L.; Vinkers, M.; Guillemont, J.; Pasquier, E.; et al. In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J. Med. Chem.?2005, 48, 1901–1909.
[88]  Grimberg, B.T.; Jaworska, M.M.; Hough, L.B.; Zimmerman, P.A.; Phillips, J.G. Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials. Bioorg. Med. Chem. Lett.?2009, 19, 5452–5457.
[89]  Figueiredo, L.M.; Rocha, E.P.; Mancio-Silva, L.; Prevost, C.; Hernandez-Verdun, D.; Scherf, A. The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus. Nucl. Acid. Res.?2005, 33, 1111–1122.
[90]  Durand, P.M.; Oelofse, A.J.; Coetzer, T.L. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome. BMC Genomics?2006, 7, 282.
[91]  Dooley, K.E.; Flexner, C.; Andrade, A.S. Drug interactions involving combination antiretroviral therapy and other anti-infective agents: Repercussions for resource-limited countries. J. Infect. Dis.?2008, 198, 948–961.
[92]  Belanger, A.S.; Caron, P.; Harvey, M.; Zimmerman, P.A.; Mehlotra, R.K.; Guillemette, C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab. Dispos.?2009, 37, 1793–1796.
[93]  Mehlotra, R.K.; Bockarie, M.J.; Zimmerman, P.A. Prevalence of UGT1A9 and UGT2B7 nonsynonymous single nucleotide polymorphisms in West African, Papua New Guinean, and North American populations. Eur. J. Clin. Pharmacol.?2007, 63, 1–8.
[94]  Mehlotra, R.K.; Ziats, M.N.; Bockarie, M.J.; Zimmerman, P.A. Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea. Eur. J. Clin. Pharmacol.?2006, 62, 267–275.
[95]  Mehlotra, R.K.; Bockarie, M.J.; Zimmerman, P.A. CYP2B6 983T>C polymorphism is prevalent in West Africa but absent in Papua New Guinea: Implications for HIV/AIDS treatment. Br. J. Clin. Pharmacol.?2007, 64, 391–395.
[96]  Kozlov, S.; Waters, N.C.; Chavchich, M. Leveraging cell cycle analysis in anticancer drug discovery to identify novel plasmodial drug targets. Infect. Disord. Drug Targets?2010, 10, 165–190.
[97]  Sicard, A.; Semblat, J.P.; Doerig, C.; Hamelin, R.; Moniatte, M.; Dorin-Semblat, D.; Spicer, J.A.; Srivastava, A.; Retzlaff, S.; Heussler, V.; et al. Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes. Cell. Microbiol.?2010, doi:10.1111/j.1462-5822.2011.01582.x.
[98]  Firestone, G.L.; Sundar, S.N. Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev. Mol. Med.?2009, 11, e32.
[99]  Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today?2010, 15, 668–678.
[100]  Li-Weber, M. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett.?2010. Epub ahead of print.
[101]  Sattler, M.; Pride, Y.B.; Ma, P.; Gramlich, J.L.; Chu, S.C.; Quinnan, L.A.; Shirazian, S.; Liang, C.; Podar, K.; Christensen, J.G.; et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res.?2003, 63, 5462–5469.
[102]  Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol.?2006, 407, 597–612.
[103]  Doerig, C.; Abdi, A.; Bland, N.; Eschenlauer, S.; Dorin-Semblat, D.; Fennell, C.; Halbert, J.; Holland, Z.; Nivez, M.P.; Semblat, J.P.; et al. Malaria: Targeting parasite and host cell kinomes. Biochim. Biophys. Acta?2010, 1804, 604–612.
[104]  Jirage, D.; Keenan, S.M.; Waters, N.C. Exploring novel targets for antimalarial drug discovery: Plasmodial protein kinases. Infect. Disord. Drug Targets?2010, 10, 134–146.
[105]  Leiriao, P.; Albuquerque, S.S.; Corso, S.; van Gemert, G.J.; Sauerwein, R.W.; Rodriguez, A.; Giordano, S.; Mota, M.M. HGF/MET signalling protects Plasmodium-infected host cells from apoptosis. Cell. Microbiol.?2005, 7, 603–609.
[106]  Vangapandu, S.; Jain, M.; Kaur, K.; Patil, P.; Patel, S.R.; Jain, R. Recent advances in antimalarial drug development. Med. Res. Rev.?2007, 27, 65–107.
[107]  Khan, M.O.; Levi, M.S.; Tekwani, B.L.; Khan, S.I.; Kimura, E.; Borne, R.F. Synthesis and antimalarial activities of cyclen 4-aminoquinoline analogs. Antimicrob. Agents Chemother.?2009, 53, 1320–1324.
[108]  Sunduru, N.; Sharma, M.; Srivastava, K.; Rajakumar, S.; Puri, S.K.; Saxena, J.K.; Chauhan, P.M. Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorg. Med. Chem.?2009, 17, 6451–6462.
[109]  Sunduru, N.; Srivastava, K.; Rajakumar, S.; Puri, S.K.; Saxena, J.K.; Chauhan, P.M. Synthesis of novel thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline as potent antimalarials. Bioorg. Med. Chem. Lett.?2009, 19, 2570–2573.
[110]  Dow, G.S.; Milner, E.; Caridha, D.; Gardner, S.; Lanteri, C.; Kozar, M.; Mannila, A.; McCalmont, W.; Melendez, V.; Moon, J.; et al. Central Nervous System (CNS) exposure of next generation quinoline methanols is reduced relative to mefloquine after intravenous (IV) dosing in mice. Am. J. Trop. Med. Hyg.?2010, 83, 213.
[111]  Milner, E.; McCalmont, W.; Bhonsle, J.; Caridha, D.; Carroll, D.; Gardner, S.; Gerena, L.; Gettayacamin, M.; Lanteri, C.; Luong, T.; et al. Structure-activity relationships amongst 4-position quinoline methanol antimalarials that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum. Bioorg. Med. Chem. Lett.?2010, 20, 1347–1351.
[112]  Milner, E.; McCalmont, W.; Bhonsle, J.; Caridha, D.; Cobar, J.; Gardner, S.; Gerena, L.; Goodine, D.; Lanteri, C.; Melendez, V.; et al. Anti-malarial activity of a non-piperidine library of next-generation quinoline methanols. Malar. J.?2010, 9, 51.
[113]  Tekwani, B.L.; Walker, L.A. 8-Aminoquinolines: Future role as antiprotozoal drugs. Curr. Opin. Infect. Dis.?2006, 19, 623–631.
[114]  Jefford, C.W. New developments in synthetic peroxidic drugs as artemisinin mimics. Drug Discov. Today?2007, 12, 487–495.
[115]  Efferth, T.; Kaina, B. Toxicity of the antimalarial artemisinin and its dervatives. Crit. Rev. Toxicol.?2010, 40, 405–421.
[116]  Kongpatanakul, S.; Chatsiricharoenkul, S.; Khuhapinant, A.; Atipas, S.; Kaewkungwal, J. Comparative study of dihydroartemisinin and artesunate safety in healthy Thai volunteers. Int. J. Clin. Pharmacol. Ther.?2009, 47, 579–586.
[117]  Held, J.; Soomro, S.A.; Kremsner, P.G.; Jansen, F.H.; Mordmuller, B. In vitro activity of new artemisinin derivatives against Plasmodium falciparum clinical isolates from Gabon. Int. J. Antimicrob. Agents?2011. submitted.
[118]  Sun, L.; Shah, F.; Helal, M.A.; Wu, Y.; Pedduri, Y.; Chittiboyina, A.G.; Gut, J.; Rosenthal, P.J.; Avery, M.A. Design, synthesis, and development of novel guaianolide-endoperoxides as potential antimalarial agents. J. Med. Chem.?2010, 53, 7864–7868.
[119]  Posner, G.H.; Chang, W.; Hess, L.; Woodard, L.; Sinishtaj, S.; Usera, A.R.; Maio, W.; Rosenthal, A.S.; Kalinda, A.S.; D'Angelo, J.G.; et al. Malaria-infected mice are cured by oral administration of new artemisinin derivatives. J. Med. Chem.?2008, 51, 1035–1042.
[120]  Singh, A.S.; Verma, V.P.; Hassam, M.; Krishna, N.N.; Puri, S.K.; Singh, C. Amino- and hydroxy-functionalized 11-azaartemisinins and their derivatives. Org. Lett.?2008, 10, 5461–5464.
[121]  Singh, C.; Chaudhary, S.; Kanchan, R.; Puri, S.K. Conversion of antimalarial drug artemisinin to a new series of tricyclic 1,2,4-trioxanes1. Org. Lett.?2007, 9, 4327–4329.
[122]  Singh, C.; Chaudhary, S.; Puri, S.K. New orally active derivatives of artemisinin with high efficacy against multidrug-resistant malaria in mice. J. Med. Chem.?2006, 49, 7227–7233.
[123]  Dow, G.S.; Koenig, M.L.; Wolf, L.; Gerena, L.; Lopez-Sanchez, M.; Hudson, T.H.; Bhattacharjee, A.K. The antimalarial potential of 4-quinolinecarbinolamines may be limited due to neurotoxicity and cross-resistance in mefloquine-resistan Plasmodium falciparum strains. Antimicrob. Agents Chemother.?2004, 48, 2624–2632.
[124]  Burgess, S.J.; Selzer, A.; Kelly, J.X.; Smilkstein, M.J.; Riscoe, M.K.; Peyton, D.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem.?2006, 49, 5623–5625.
[125]  Andrews, S.; Burgess, S.J.; Skaalrud, D.; Kelly, J.X.; Peyton, D.H. Reversal agent and linker variants of reversed chloroquines: Activities against Plasmodium falciparum. J. Med. Chem.?2010, 53, 916–919.
[126]  Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem.?2010, 53, 6477–6489.
[127]  Muregi, F.W.; Ishih, A. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Dev. Res.?2010, 71, 20–32.
[128]  Walsh, J.J.; Coughlan, D.; Heneghan, N.; Gaynor, C.; Bell, A. A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg. Med. Chem. Lett.?2007, 17, 3599–3602.
[129]  Cosledan, F.; Fraisse, L.; Pellet, A.; Guillou, F.; Mordmuller, B.; Kremsner, P.G.; Moreno, A.; Mazier, D.; Maffrand, J.P.; Meunier, B. Selection of a trioxaquine as an antimalarial drug candidate. Proc. Natl. Acad. Sci. USA?2008, 105, 17579–17584.
[130]  Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod.?2003, 66, 1022–1037.
[131]  Ginsburg, H.; Deharo, E. A call for using natural compounds in the development of new antimalarial treatments—An introduction. Malar. J.?2011, 10 Suppl.1, S1.
[132]  Fernandez, L.S.; Sykes, M.L.; Andrews, K.T.; Avery, V.M. Antiparasitic activity of alkaloids from plant species of Papua New Guinea and Australia. Int. J. Antimicrob. Agents?2010, 36, 275–279.
[133]  Hnawia, E.; Hassani, L.; Deharo, E.; Maurel, S.; Waikedre, J.; Cabalion, P.; Bourdy, G.; Valentin, A.; Jullian, V.; Fogliani, B. Antiplasmodial activity of New Caledonia and Vanuatu traditional medicines. Pharm. Biol.?2011, 49, 369–376.
[134]  Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem.?2009, 17, 3229–3256.
[135]  Turschner, S.; Efferth, T. Drug resistance in Plasmodium: Natural products in the fight against malaria. Mini Rev. Med. Chem.?2009, 9, 206–214.
[136]  Wright, C.W. Recent developments in research on terrestrial plants used for the treatment of malaria. Nat. Prod. Rep.?2010, 27, 961–968.
[137]  Efferth, T.; Koch, E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug Targets?2011, 12, 122–132.
[138]  Bourdy, G.; Willcox, M.L.; Ginsburg, H.; Rasoanaivo, P.; Graz, B.; Deharo, E. Ethnopharmacology and malaria: New hypothetical leads or old efficient antimalarials? Int. J. Parasitol.?2008, 38, 33–41.
[139]  Willcox, M.; Benoit-Vical, F.; Fowler, D.; Bourdy, G.; Burford, G.; Giani, S.; Graziose, R.; Houghton, P.; Randrianarivelojosia, M.; Rasoanaivo, P. Do ethnobotanical and laboratory data predict clinical safety and efficacy of anti-malarial plants? Malar. J.?2011, 10 Suppl.1, S7.
[140]  Wells, T.N. Natural products as starting points for future anti-malarial therapies: Going back to our roots? Malar. J.?2011, 10 Suppl.1, S3.
[141]  Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrian, F.; Matzen, J.T.; Anderson, P.; et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA?2008, 105, 9059–9064.
[142]  Gamo, F.J.; Sanz, L.M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.L.; Vanderwall, D.E.; Green, D.V.; Kumar, V.; Hasan, S.; et al. Thousands of chemical starting points for antimalarial lead identification. Nature?2010, 465, 305–310.
[143]  Guiguemde, W.A.; Shelat, A.A.; Bouck, D.; Duffy, S.; Crowther, G.J.; Davis, P.H.; Smithson, D.C.; Connelly, M.; Clark, J.; Zhu, F.; et al. Chemical genetics of Plasmodium falciparum. Nature?2010, 465, 311–315.
[144]  Rottmann, M.; McNamara, C.; Yeung, B.K.; Lee, M.C.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D.M.; Dharia, N.V.; Tan, J.; et al. Spiroindolones, a potent compound class for the treatment of malaria. Science?2010, 329, 1175–1180.
[145]  Rush, M.A.; Baniecki, M.L.; Mazitschek, R.; Cortese, J.F.; Wiegand, R.; Clardy, J.; Wirth, D.F. Colorimetric high-throughput screen for detection of heme crystallization inhibitors. Antimicrob. Agents Chemother.?2009, 53, 2564–2568.
[146]  Woynarowski, J.M.; Krugliak, M.; Ginsburg, H. Pharmacogenomic analyses of targeting the AT-rich malaria parasite genome with AT-specific alkylating drugs. Mol. Biochem. Parasitol.?2007, 154, 70–81.
[147]  Fatumo, S.; Plaimas, K.; Mallm, J.P.; Schramm, G.; Adebiyi, E.; Oswald, M.; Eils, R.; Konig, R. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infect. Genet. Evol.?2009, 9, 351–358.
[148]  Fatumo, S.; Plaimas, K.; Adebiyi, E.; Konig, R. Comparing metabolic network models based on genomic and automatically inferred enzyme information from Plasmodium and its human host to define drug targets in silico. Infect. Genet. Evol.?2011, 11, 201–208.
[149]  Ekenna, C.; Fatuma, S.; Adebiyi, E. In-silico evaluation of malaria drug targets. Int. J. Engineer. Technol.?2010, 2, 132–135.
[150]  Wolf, A.; Shahid, M.; Kasam, V.; Ziegler, W.; Hofmann-Apitius, M. In silico drug discovery approaches on grid computing infrastructures. Curr. Clin. Pharmacol.?2010, 5, 37–46.
[151]  Degliesposti, G.; Kasam, V.; Da Costa, A.; Kang, H.K.; Kim, N.; Kim, D.W.; Breton, V.; Kim, D.; Rastelli, G. Design and discovery of plasmepsin II inhibitors using an automated workflow on large-scale grids. ChemMedChem?2009, 4, 1164–1173.
[152]  Kasam, V.; Zimmermann, M.; Maass, A.; Schwichtenberg, H.; Wolf, A.; Jacq, N.; Breton, V.; Hofmann-Apitius, M. Design of new plasmepsin inhibitors: A virtual high throughput screening approach on the EGEE grid. J. Chem. Inf. Model.?2007, 47, 1818–1828.
[153]  Kasam, V.; Salzemann, J.; Botha, M.; Dacosta, A.; Degliesposti, G.; Isea, R.; Kim, D.; Maass, A.; Kenyon, C.; Rastelli, G.; Hofmann-Apitius, M.; et al. WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures. Malar. J.?2009, 8, 88.
[154]  Gardner, M.J.; Hall, N.; Fung, E.; White, O.; Berriman, M.; Hyman, R.W.; Carlton, J.M.; Pain, A.; Nelson, K.E.; Bowman, S.; et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature?2002, 419, 498–511.
[155]  Ntoumi, F.; Kwiatkowski, D.P.; Diakite, M.; Mutabingwa, T.K.; Duffy, P.E. New interventions for malaria: mining the human and parasite genomes. Am. J. Trop. Med. Hyg.?2007, 77 Suppl.6, 270–275.
[156]  Ginsburg, H. Progress in in silico functional genomics: The malaria Metabolic Pathways database. Trends Parasitol.?2006, 22, 238–240.
[157]  Rao, A.; Yeleswarapu, S.J.; Raghavendra, G.; Srinivasan, R.; Bulusu, G. PlasmoID: A P. falciparum protein information discovery tool. In Silico Biol.?2009, 9, 195–202.
[158]  Ben Mamoun, C.; Prigge, S.T.; Vial, H. Targeting the lipid metabolic pathways for the treatment of malaria. Drug Dev. Res.?2010, 71, 44–55.
[159]  Huthmacher, C.; Hoppe, A.; Bulik, S.; Holzhutter, H.G. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst. Biol.?2010, 4, 120.
[160]  Oyelade, J.; Ewejobi, I.; Brors, B.; Eils, R.; Adebiyi, E. Computational identification of signalling pathways in Plasmodium falciparum. Infect. Genet. Evol.?2010, doi:10.1016/j.meegid.2010.11.006.
[161]  Mu, J.; Seydel, K.B.; Bates, A.; Su, X.Z. Recent progress in functional genomic research in Plasmodium falciparum. Curr. Genomics?2010, 11, 279–286.
[162]  Choi, S.R.; Mukherjee, P.; Avery, M.A. The fight against drug-resistant malaria: novel plasmodial targets and antimalarial drugs. Curr. Med. Chem.?2008, 15, 161–171.
[163]  Dharia, N.V.; Chatterjee, A.; Winzeler, E.A. Genomics and systems biology in malaria drug discovery. Curr. Opin. Investig. Drugs?2010, 11, 131–138.
[164]  Gardiner, D.L.; Skinner-Adams, T.S.; Brown, C.L.; Andrews, K.T.; Stack, C.M.; McCarthy, J.S.; Dalton, J.P.; Trenholme, K.R. Plasmodium falciparum: New molecular targets with potential for antimalarial drug development. Expert Rev. Anti-Infect. Ther.?2009, 7, 1087–1098.
[165]  Jana, S.; Paliwal, J. Novel molecular targets for antimalarial chemotherapy. Int. J. Antimicrob. Agents?2007, 30, 4–10.
[166]  Muregi, F.W.; Kirira, P.G.; Ishih, A. Novel rational drug design strategies with potential to revolutionize malaria chemotherapy. Curr. Med. Chem.?2011, 18, 113–143.
[167]  Na-Bangchang, K.; Karbwang, J. Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam Clin. Pharmacol.?2009, 23, 387–409.
[168]  Wells, T.N.; Alonso, P.L.; Gutteridge, W.E. New medicines to improve control and contribute to the eradication of malaria. Nat. Rev. Drug Discov.?2009, 8, 879–891.
[169]  Coteron, J.M.; Catterick, D.; Castro, J.; Chaparro, M.J.; Diaz, B.; Fernandez, E.; Ferrer, S.; Gamo, F.J.; Gordo, M.; Gut, J.; et al. Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J. Med. Chem.?2010, 53, 6129–6152.
[170]  Gibbons, P.; Verissimo, E.; Araujo, N.C.; Barton, V.; Nixon, G.L.; Amewu, R.K.; Chadwick, J.; Stocks, P.A.; Biagini, G.A.; Srivastava, A.; et al. Endoperoxide carbonyl falcipain 2/3 inhibitor hybrids: Toward combination chemotherapy of malaria through a single chemical entity. J. Med. Chem.?2010, 53, 8202–8206.
[171]  Shah, F.; Mukherjee, P.; Gut, J.; Legac, J.; Rosenthal, P.J.; Tekwani, B.L.; Avery, M.A. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J. Chem. Inf. Model.?2011. submitted.
[172]  Teixeira, C.; Gomes, J.R.; Gomes, P. Falcipains, Plasmodium falciparum cysteine proteases as Key drug targets against malaria. Curr. Med. Chem.?2011. submitted.
[173]  Pallavi, R.; Roy, N.; Nageshan, R.K.; Talukdar, P.; Pavithra, S.R.; Reddy, R.; Venketesh, S.; Kumar, R.; Gupta, A.K.; Singh, R.K.; et al. Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J. Biol. Chem.?2010, 285, 37964–37975.
[174]  Pesce, E.R.; Cockburn, I.L.; Goble, J.L.; Stephens, L.L.; Blatch, G.L. Malaria heat shock proteins: Drug targets that chaperone other drug targets. Infect. Disord. Drug Targets?2010, 10, 147–157.
[175]  Shonhai, A. Plasmodial heat shock proteins: Targets for chemotherapy. FEMS Immunol. Med. Microbiol.?2010, 58, 61–74.
[176]  Doerig, C.; Meijer, L. Antimalarial drug discovery: Targeting protein kinases. Expert Opin. Ther. Targets?2007, 11, 279–290.
[177]  Doerig, C.; Billker, O.; Haystead, T.; Sharma, P.; Tobin, A.B.; Waters, N.C. Protein kinases of malaria parasites: An update. Trends Parasitol.?2008, 24, 570–577.
[178]  Holland, Z.; Prudent, R.; Reiser, J.B.; Cochet, C.; Doerig, C. Functional analysis of protein kinase CK2 of the human malaria parasite Plasmodium falciparum. Eukaryot. Cell?2009, 8, 388–397.
[179]  Caridha, D.; Kathcart, A.K.; Jirage, D.; Waters, N.C. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg. Med. Chem. Lett.?2010, 20, 3863–3867.
[180]  Geyer, J.A.; Keenan, S.M.; Woodard, C.L.; Thompson, P.A.; Gerena, L.; Nichols, D.A.; Gutteridge, C.E.; Waters, N.C. Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Bioorg. Med. Chem. Lett.?2009, 19, 1982–1985.
[181]  Geyer, J.A.; Prigge, S.T.; Waters, N.C. Targeting malaria with specific CDK inhibitors. Biochim. Biophys. Acta?2005, 1754, 160–170.
[182]  Kato, N.; Sakata, T.; Breton, G.; Le Roch, K.G.; Nagle, A.; Andersen, C.; Bursulaya, B.; Henson, K.; Johnson, J.; Kumar, K.A.; et al. Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat. Chem. Biol.?2008, 4, 347–356.
[183]  Lemercier, G.; Fernandez-Montalvan, A.; Shaw, J.P.; Kugelstadt, D.; Bomke, J.; Domostoj, M.; Schwarz, M.K.; Scheer, A.; Kappes, B.; Leroy, D. Identification and characterization of novel small molecules as potent inhibitors of the plasmodial calcium-dependent protein kinase 1. Biochemistry?2009, 48, 6379–6389.
[184]  Bouloc, N.; Large, J.M.; Smiljanic, E.; Whalley, D.; Ansell, K.H.; Edlin, C.D.; Bryans, J.S. Synthesis and in vitro evaluation of imidazopyridazines as novel inhibitors of the malarial kinase PfPK7. Bioorg. Med. Chem. Lett.?2008, 18, 5294–5298.
[185]  Dorin-Semblat, D.; Sicard, A.; Doerig, C.; Ranford-Cartwright, L.; Doerig, C. Disruption of the PfPK7 gene impairs schizogony and sporogony in the human malaria parasite Plasmodium falciparum. Eukaryot. Cell?2008, 7, 279–285.
[186]  Klein, M.; Diner, P.; Dorin-Semblat, D.; Doerig, C.; Grotli, M. Synthesis of 3-(1,2,3-triazol-1-yl)-and 3-(1,2,3-triazol-4-yl)-substituted pyrazolo[3,4-d]pyrimidin-4-amines via click chemistry: potential inhibitors of the Plasmodium falciparum PfPK7 protein kinase. Org. Biomol. Chem.?2009, 7, 3421–3429.
[187]  Merckx, A.; Echalier, A.; Langford, K.; Sicard, A.; Langsley, G.; Joore, J.; Doerig, C.; Noble, M.; Endicott, J. Structures of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Structure?2008, 16, 228–238.
[188]  Dorin-Semblat, D.; Quashie, N.; Halbert, J.; Sicard, A.; Doerig, C.; Peat, E.; Ranford-Cartwright, L.; Doerig, C. Functional characterization of both MAP kinases of the human malaria parasite Plasmodium falciparum by reverse genetics. Mol. Microbiol.?2007, 65, 1170–1180.
[189]  Reininger, L.; Tewari, R.; Fennell, C.; Holland, Z.; Goldring, D.; Ranford-Cartwright, L.; Billker, O.; Doerig, C. An essential role for the Plasmodium Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. J. Biol. Chem.?2009, 284, 20858–20868.
[190]  Wurtz, N.; Chapus, C.; Desplans, J.; Parzy, D. cAMP-dependent protein kinase from Plasmodium falciparum: An update. Parasitology?2011, 138, 1–25.
[191]  Andrews, K.T.; Tran, T.N.; Wheatley, N.C.; Fairlie, D.P. Targeting histone deacetylase inhibitors for anti-malarial therapy. Curr. Top. Med. Chem.?2009, 9, 292–308.
[192]  Rotili, D.; Simonetti, G.; Savarino, A.; Palamara, A.T.; Migliaccio, A.R.; Mai, A. Non-cancer uses of histone deacetylase inhibitors: Effects on infectious diseases and beta-hemoglobinopathies. Curr. Top. Med. Chem.?2009, 9, 272–291.
[193]  Chaal, B.K.; Gupta, A.P.; Wastuwidyaningtyas, B.D.; Luah, Y.H.; Bozdech, Z. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLoS Pathog.?2010, 6, e1000737.
[194]  Andrews, K.T.; Tran, T.N.; Lucke, A.J.; Kahnberg, P.; Le, G.T.; Boyle, G.M.; Gardiner, D.L.; Skinner-Adams, T.S.; Fairlie, D.P. Potent antimalarial activity of histone deacetylase inhibitor analogues. Antimicrob. Agents Chemother.?2008, 52, 1454–1461.
[195]  Wheatley, N.C.; Andrews, K.T.; Tran, T.L.; Lucke, A.J.; Reid, R.C.; Fairlie, D.P. Antimalarial histone deacetylase inhibitors containing cinnamate or NSAID components. Bioorg. Med. Chem. Lett.?2010, 20, 7080–7084.
[196]  Dow, G.S.; Chen, Y.; Andrews, K.T.; Caridha, D.; Gerena, L.; Gettayacamin, M.; Johnson, J.; Li, Q.; Melendez, V.; Obaldia, N., 3rd; et al. Antimalarial activity of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors. Antimicrob. Agents Chemother.?2008, 52, 3467–3477.
[197]  Marfurt, J.; Chalfein, F.; Prayoga, P.; Wabiser, F.; Kenangalem, E.; Piera, K.A.; Fairlie, D.P.; Tjitra, E.; Anstey, N.M.; Andrews, K.T.; et al. Ex vivo activity of histone deacetylase inhibitors against multidrug-resistant clinical isolates of Plasmodium falciparum and P. vivax. Antimicrob. Agents Chemother.?2011, 55, 961–966.
[198]  Painter, H.J.; Morrisey, J.M.; Mather, M.W.; Vaidya, A.B. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature?2007, 446, 88–91.
[199]  Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets?2010, 10, 226–239.
[200]  Rodrigues, T.; Lopes, F.; Moreira, R. Inhibitors of the mitochondrial electron transport chain and de novo pyrimidine biosynthesis as antimalarials: The present status. Curr. Med. Chem.?2010, 17, 929–956.
[201]  Booker, M.L.; Bastos, C.M.; Kramer, M.L.; Barker, R.H., Jr; Skerlj, R.; Sidhu, A.B.; Deng, X.; Celatka, C.; Cortese, J.F.; Guerrero Bravo, J.E.; et al. Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J. Biol. Chem.?2010, 285, 33054–33064.
[202]  Davies, M.; Heikkila, T.; McConkey, G.A.; Fishwick, C.W.; Parsons, M.R.; Johnson, A.P. Structure-based design, synthesis, and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases. J. Med. Chem.?2009, 52, 2683–2693.
[203]  Heikkila, T.; Ramsey, C.; Davies, M.; Galtier, C.; Stead, A.M.; Johnson, A.P.; Fishwick, C.W.; Boa, A.N.; McConkey, G.A. Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase. J. Med. Chem.?2007, 50, 186–191.
[204]  Ojha, P.K.; Roy, K. Chemometric modeling, docking and in silico design of triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors as antimalarials. Eur. J. Med. Chem.?2010, 45, 4645–4656.
[205]  Patel, V.; Booker, M.; Kramer, M.; Ross, L.; Celatka, C.A.; Kennedy, L.M.; Dvorin, J.D.; Duraisingh, M.T.; Sliz, P.; Wirth, D.F.; et al. Identification and characterization of small molecule inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J. Biol. Chem.?2008, 283, 35078–35085.
[206]  Rowe, J.A.; Claessens, A.; Corrigan, R.A.; Arman, M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev. Mol. Med.?2009, 11, e16.
[207]  Nathoo, S.; Serghides, L.; Kain, K.C. Effect of HIV-1 antiretroviral drugs on cytoadherence and phagocytic clearance of Plasmodium falciparum-parasitised erythrocytes. Lancet?2003, 362, 1039–1041.
[208]  Adams, Y.; Smith, S.L.; Schwartz-Albiez, R.; Andrews, K.T. Carrageenans inhibit the in vitro growth of Plasmodium falciparum and cytoadhesion to CD36. Parasitol. Res.?2005, 97, 290–294.
[209]  Dondorp, A.M.; Silamut, K.; Charunwatthana, P.; Chuasuwanchai, S.; Ruangveerayut, R.; Krintratun, S.; White, N.J.; Ho, M.; Day, N.P. Levamisole inhibits sequestration of infected red blood cells in patients with falciparum malaria. J. Infect. Dis.?2007, 196, 460–466.
[210]  Dormeyer, M.; Adams, Y.; Kramer, B.; Chakravorty, S.; Tse, M.T.; Pegoraro, S.; Whittaker, L.; Lanzer, M.; Craig, A. Rational design of anticytoadherence inhibitors for Plasmodium falciparum based on the crystal structure of human intercellular adhesion molecule 1. Antimicrob. Agents Chemother.?2006, 50, 724–730.
[211]  Andrews, K.T.; Klatt, N.; Adams, Y.; Mischnick, P.; Schwartz-Albiez, R. Inhibition of chondroitin-4-sulfate-specific adhesion of Plasmodium falciparum-infected erythrocytes by sulfated polysaccharides. Infect. Immun.?2005, 73, 4288–4294.
[212]  Simmons, D.L. Anti-adhesion therapies. Curr. Opin. Pharmacol.?2005, 5, 398–404.
[213]  Kerb, R.; Fux, R.; Morike, K.; Kremsner, P.G.; Gil, J.P.; Gleiter, C.H.; Schwab, M. Pharmacogenetics of antimalarial drugs: Effect on metabolism and transport. Lancet Infect. Dis.?2009, 9, 760–774.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133