|
计算机科学 2002
An Evolutionary Algorithm for Active Learning of Neural Network
|
Abstract:
1 引言近年来,神经网络的研究取得了很大进展,特别是,为了克服传统的BP学习算法的缺陷,即学习速度慢和人为给定的拓扑结构对特定学习任务的不适应性,而发展的自适应神经网络的增长策略,它通过不断地增长隐节点或子网来满足给定学习任务的复杂性要求。这种神经网络的增长算法不仅克服了人为指定的拓扑结构的困难,而且由于其结构过程所固有的模块化训练特性,也缓解了传统的BP算法训练速度慢的突出问题。由于神经网络训练程度很难把握,许多算法往往过分强调训练结果而牺牲泛化结果,致使网络的过拟合问题严重。为了克服过拟合问题,研究者们采用了多网络合作模型,由于多个网络的平均效应,可以避免单个