全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于上下文关系的文本分类特征描述方法

Keywords: 特征描述,文本分类,向量空间模型,权重计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

文本特征描述是文本分类的基础,其目标是用一定的可计算的特征来表示文本,在分类的时候用这些特征来区分文本。在向量空间模型(Vector Space Model,简记为VSM)中采用“词袋”法来处理文本,即文本被看成是由相互无关的词语构成的集合,不考虑词语之间的关系,但是这种处理方法不是很合理,因为文本的结构是完整的,孤立地对待单个词语将丢失文本的内容信息。在实际语言环境中,词语有一定的上下文“作用域”,“作用域”中的词语对表达同一主题具有一定的共性。本文提出了一种基于上下文关系的文本特征描述方法,包括特征选择方法CBFS及权重计算方法CBFW。该方法是在提取一个初始特征词语集合的基础上,通过用互信息(MI)来衡量词语在上下文中的依赖度,选取对主题贡献大的词语加入特征集合,同时调整不同贡献的特征词语的权重,从而更加合理地表示文本。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133