全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Suppression of Autoimmune Arthritis by Small Molecule Inhibitors of the JAK/STAT Pathway

DOI: 10.3390/ph3051446

Keywords: arthritis, autoimmune, Janus kinase, signal transducers and activators of transcription, small molecule inhibitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

A skewed ratio of pro-inflammatory to anti-inflammatory cytokines, elevated growth factor synthesis and T- and B-lymphocyte activation are 3 hallmarks of rheumatoid arthritis (RA) pathology. Interleukin-6 (IL-6), IL-7, IL-17, IL-12/IL-23 and growth factors, granulocyte macrophage-colony stimulating factor, IL-3, and erythropoietin activate the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) pathway. Evidence showed that STAT protein phosphorylation (p-STAT) by activated JAKs is permissive for p-STAT to act as transcription factors by binding to STAT-responsive gene promoter sequences. This event is critical for perpetuating RA, in part, by up-regulating pro-inflammatory cytokine gene transcription. Activation of JAK/STAT by cytokines and growth factors can induce ‘cross-talk’ with other signaling pathways by which Stress-Activated Protein/Mitogen-Activated Protein Kinase (SAP/MAPK) and Phosphatidylinositide-3-Kinase (PI3K)-mediated signaling are also activated. JAK-specific small molecule inhibitors (SMIs) were developed to test whether JAK/STAT pathway blockade would regulate autoimmune-mediated inflammation. JAK-specific SMI blockade inhibited p-STAT induced by pro-inflammatory cytokines in vitro. Systemically administered JAK-specific SMI blockade also ameliorated biomarkers of inflammation in well-validated arthritis animal models. A few JAK-specific SMIs have made their way into RA clinical trials. In fact, the JAK3-specific SMI, CP-690,500 is the first JAK/STAT SMI to be assessed for clinical efficacy in a Phase III RA trial.

References

[1]  Firestein, G.S. Immunological mechanisms in the pathogenesis of rheumatoid arthritis. J. Clin. Rheumatol.?2005, 11 (Suppl. 3), S39–S44, doi:10.1097/01.rhu.0000166673.34461.33. 16357749
[2]  McCormack, W.J.; Parker, A.E.; O’Neill, L.A. Toll-like receptors and NOD-like receptors in rheumatic diseases. Arthritis Res. Ther.?2009, 11. Article 243.
[3]  Toh, M.L.; Moissec, P. The role of T cells in rheumatoid arthritis; new subsets and new targets. Curr. Opin. Rheumatol.?2007, 19, 284–288, doi:10.1097/BOR.0b013e32805e87e0. 17414957
[4]  Bugatti, S.; Codullo, V.; Caporali, R.; Montecucco, C. B cells in rheumatoid arthritis. Autoimmun. Rev.?2007, 6, 482–487.
[5]  D?rner, T.; Kinnman, N.; Tak, P.P. Targeting B cells in immune-mediated inflammatory diseases: A comprehensive review of mechanisms of action and identification of biomarkers. Pharmacol. Ther.?2010, 125, 464–475, doi:10.1016/j.pharmthera.2010.01.001. 20097226
[6]  Kavousanaki, M.; Makrigiannakis, A.; Boumpas, D.; Verginis, P. Novel role of plasmacytoid dendritic cells in humans: induction of interleukin-10-producing Treg cells by plasmacytoid dendritic cells in patients with rheumatoid arthritis responding to therapy. Arthritis Rheum.?2010, 62, 53–63.
[7]  Ruprecht, C.R.; Gattorno, M.; Ferlito, F.; Gregorio, A.; Martini, A.; Lanzavecchia, A.; Sallusto, F. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med.?2005, 201, 1793–1803, doi:10.1084/jem.20050085. 15939793
[8]  Malemud, C.J.; Reddy, S.K. Targeting cytokines, chemokines and adhesion molecules in rheumatoid arthritis. Curr. Rheum. Rev.?2008, 4, 219–234.
[9]  Asquith, D.L.; McInnes, I.B. Emerging cytokine targets in rheumatoid arthritis. Curr. Opin. Rheumatol.?2007, 19, 246–251.
[10]  Walker, J.G.; Smith, M.D. The Jak-STAT pathway in rheumatoid arthritis. J. Rheumatol.?2005, 32, 1650–1653.
[11]  Murray, P.J. The JAK-STAT signaling pathway: Input and output integration. J. Immunol.?2007, 178, 2623–2629.
[12]  Malemud, C.J.; Pearlman, E. Targeting JAK/STAT signaling pathway in inflammatory diseases. Curr. Signal Transduct. Ther.?2009, 4, 201–221, doi:10.2174/157436209789057467.
[13]  Kaplan, M.H. STAT4: A critical regulator of inflammation in vivo. Immunol. Res.?2005, 31, 231–242, doi:10.1385/IR:31:3:231. 15888914
[14]  El Kasmi, K.C.; Holst, J.; Coffre, M.; Mielke, L.; de Pauw, A.; Lhocine, N.; Smith, A.M.; Rutschman, R.; Kaushal, D.; Shen, Y.; Suda, T.; Donnelly, R.P.; Myers, M.G., Jr.; Alexander, W.; Vignali, D.A.; Watowich, S.S.; Ernst, M.; Hilton, D.J.; Murray, P.J. General nature of SAT3-activated anti-inflammatory response. J. Immunol.?2006, 177, 7880–7888. 17114459
[15]  Shuai, K. Regulation of cytokine signaling by PIAS proteins. Cell. Res.?2006, 16, 192–202.
[16]  Croker, B.A.; Kiu, H.; Nicholson, S.E. SOCS regulation of the JAK/STAT signaling pathway. Semin. Cell Dev. Biol.?2008, 19, 414–422.
[17]  Malemud, C.J. Recent advances in neutralizing the IL-6 pathway in arthritis. Open Access Rheumatol. Res. Rev.?2009, 1, 133–150.
[18]  Burrage, P.S.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases: Role in arthritis. Front Biosci.?2006, 11, 529–543.
[19]  Rannou, F.; Francois, M.; Corvol, M.-T.; Berenbaum, F. Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine?2006, 73, 29–36, doi:10.1016/j.jbspin.2004.12.013. 16087381
[20]  Komiya, K.; Enomoto, H.; Inoki, I.; Ozaki, S.; Fujita, Y.; Ikeda, E.; Ohuchi, E.; Matsumoto, H.; Toyama, Y.; Okada, Y. Expression of ADAM15 in rheumatoid synovium: Upregulation by vascular endothelial growth factor and possible implications for angiogenesis. Arthritis Res. Ther.?2005, 7, R1158–R1173.
[21]  Alaprantis, A.O.; Glimcher, L.H. NFATc1 in inflammatory and musculoskeletal conditions. In Osteoimmunology; Choi, Y., Ed.; Springer: New York, NY, USA, 2010; Volume 658, pp. 69–75.
[22]  Walsh, N.C.; Crotti, T.N.; Goldring, S.R.; Gravellese, E.M. Rheumatic diseases: The effects of inflammation on bone. Immunol. Rev.?2005, 208, 228–251.
[23]  Leibbrandt, A.; Penninger, J.M. RANKL/RANK are key factors for osteoclastic differentiation and bone loss in arthopathies. Adv.Exp. Med. Biol.?2009, 649, 100–113.
[24]  Benito, M.J.; Murphy, E.; Murphy, E.P.; van den Berg, W.B.; FitzGerald, O.; Bresnihan, B. Increased synovial tissue NF-κB expression at sites adjacent to the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum.?2004, 50, 1781–1787, doi:10.1002/art.20260.
[25]  Malemud, C.J.; Gillespie, H.J. The role of apoptosis in arthritis. Curr. Rheum. Rev.?2005, 1, 131–142.
[26]  Smith, A.D.; Weedon, H.; Papangelis, V.; Walker, J.; Roberts-Thomson, P.J.; Ahern, M.J. Apoptosis in rheumatoid arthritis synovial membrane: Modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology (Oxford)?2010. [Epub ahead of print].
[27]  Wu, T.; Mohan, C. The AKT axis as a therapeutic target in autoimmune diseases. Endocr. Metab. Immune Disord. DrugTargets?2009, 9, 145–150.
[28]  Seidel, H.M.; Lamb, P.; Rosen, J. Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene?2000, 19, 2645–2656.
[29]  Imada, K.; Leonard, W.J. The Jak-STAT pathway. Mol. Immunol.?2000, 37, 1–11.
[30]  Hebenstreit, D.; Horejs-Hoeck, J.; Duschl, A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect.?2005, 18, 243–249, doi:10.1358/dnp.2005.18.4.908658. 16034480
[31]  Xu, Q.; Briggs, J.; Park, S.; Niu, G.; Kortylewski, M.; Zhang, S.; Gritsko, T.; Turkson, J.; Kay, H.; Semenza, G.L.; Cheng, J.Q.; Jove, R.; Yu, H. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene?2005, 24, 5552–5560.
[32]  Chen, B.; Zong, Q.; Cibotti, R.; Morris, C.; Castaneda, J.; Naiman, B.; Liu, D.; Glodek, A.; Sims, G.P.; Herbst, R.; Horrigan, S.K.; Kiener, P.A.; Soppet, D.; Coyle, A.J.; Audoly, L. Genomic-based high throughput screening identifies small molecules that differentially inhibit the antiviral and immunomodulatory effects of IFN-α. Mol. Med.?2008, 14, 374–382. 18475307
[33]  Ivanenkov, Y.A.; Balakin, K.V.; Tkachenko, S.E. New approaches to the treatment of inflammatory disease: focus on small molecule inhibitors of signal transduction pathways. Drugs R D?2008, 9, 397–434.
[34]  Roberts, M.B.; Machleidt, T.; Carlson, C.B.; Bi, K. Cellular LanthaScreen and β-lactamase reporter assays for high-throughput screening of JAK2 inhibitors. Assay Drug Dev. Technol.?2008, 6, 519–529, doi:10.1089/adt.2008.144. 18694336
[35]  Covey, T.M.; Putta, S.; Cesano, A. Single cell network profiling (SCNP): Mapping drug target interactions. Assay Drug Dev. Technol.?2010. [Epub ahead of print].
[36]  Quaedackers, M.E.; Mol, W.; Korevaar, S.S.; van Gurp, E.A.; van Ijcken, W.F.; Chan, G.; Weimar, W.; Baan, C.C. Monitoring of the immunomodulatory effect of CP-690,550 by analysis of the JAK/STAT pathway in kidney transplant patients. Transplantation?2009, 88, 1002–1008, doi:10.1097/TP.0b013e3181b9ced7. 19855246
[37]  Milici, A.J.; Kudlacz, E.M.; Audoly, L.; Zwillich, S.; Changelian, P. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res. Ther.?2008, 10, R14.
[38]  Kremer, J.M.; Bloom, B.J.; Breedveld, F.C.; Coombs, J.H.; Fletcher, M.P.; Gruben, D.; Krishnaswami, S.; Burgos-Vargas, R.; Wilkinson, B.; Zerbini, C.A.; Zwillich, S.H. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: Results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum.?2009, 60, 1895–1905. 19565475
[39]  Kim, B.H.; Oh, S.R.; Yin, C.H.; Lee, S.; Kim, E.A.; Kim, M.S.; Sandoval, C.; Jayabose, S.; Bach, E.A.; Lee, H.K.; Baeg, G.H. MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br. J. Haematol.?2010, 148, 132–143, doi:10.1111/j.1365-2141.2009.07925.x. 19793252
[40]  Hintzen, C.; Quaiser, S.; Pap, T.; Heinrich, P.C.; Hermanns, H.M. Induction of CCL13 expression in synovial fibroblasts highlights a significant role of oncostatin M in rheumatoid arthritis. Arthritis Rheum.?2009, 60, 1932–1943. 19565514
[41]  Jahrsd?rfer, B.; Vollmer, A.; Blackwell, S.E.; Maier, J.; Sontheimer, K.; Beyer, T.; Mandel, B.; Lunov, O.; Tron, K.; Nienhaus, G.U.; Simmet, T.; Debatin, K.M.; Weiner, G.J.; Fabricius, D. Granzyme B oproduced by human plasmacytoid dendritic cells suppresses T-cell expansion. Blood?2010, 115, 1156–1165. 19965634
[42]  Steidel, S.; Ratsch, O.; Brocks, B.; Dürr, M.; Thomassen-Wolf, E. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification. Mol. Immunol.?2008, 46, 135–144, doi:10.1016/j.molimm.2008.07.013. 18722015
[43]  Zhou, J.; Tagaya, Y.; Tolouei-Semnani, R.; Schlom, J.; Sabzevari, H. Physiological relevance of antigen presentasome (APS), an acquired MHC/costimulatory complex, in the sustained activation of CD4+ T cells in the absence of APCs. Blood?2005, 105, 3298–3246.
[44]  Baldwin, H.M.; Ito-Ihara, T.; Isaacs, J.D.; Hilkens, C.M. Tumor necrosis factor alpha blockade impairs dendritic cell survival and function in rheumatoid arthritis. Ann. Rheum. Dis.?2010. [Epub ahead of print].
[45]  Kim, B.H.; Yin, C.H.; Guo, Q.; Bach, E.A.; Lee, H.; Sandoval, C.; Jayabose, S.; Ulaczyk-Lesanko, A.; Hall, D.G.; Baeg, G.H. A small-molecule compound identified through a cell-based screening inhibits JAK/STAT pathway signaling in human cancer cells. Mol. Cancer Ther.?2008, 7, 2672–2680, doi:10.1158/1535-7163.MCT-08-0309. 18790749
[46]  Kneda, A.; Neumann, E.; Müller-Ladner, U. Developments in the synovial biology field 2006. Arthritis Res. Ther.?2007, 9. Article 209.
[47]  Ioannidis, S.; Lamb, M.L.; Davies, A.M.; Almeida, L.; Su, M.; Bebrnitz, G.; Ye, M.; Bell, K.; Alimzhanov, M.; Zinda, M. Discovery of pyrazol-3-ylamino pyrazines as novel JAK2 inhibitors. Bioorg. Med. Chem. Lett.?2009, 19, 6524–6528.
[48]  Lin, Q.; Meloni, D.; Pan, Y.; Xia, M.; Rodgers, J.; Shepard, S.; Li, M.; Galya, L.; Metcalf, B.; Yue, T.Y.; Liu, P.; Zhou, J. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org. Lett.?2009, 11, 1999–2002.
[49]  Quintás-Cardama, A.; Vaddi, K.; Liu, P.; Manshouri, T.; Li, J.; Scherle, P.A.; Caulder, E.; Wen, X.; Li, Y.; Waeltz, P.; Rupar, M.; Burn, T.; Lo, Y.; Kelley, J.; Covington, M.; Shepard, S.; Rodgers, J.D.; Haley, P.; Kantarjian, H.; Fridman, J.S.; Verstovsek, S. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: implications for the treatment of myeloproliferative neoplasms. Blood?2010, 115, 3109–3117.
[50]  Williams, S.; Scherle, P.; Shi, P.; Newton, R.; McKeeve, E.; Fridman, J.; Burn, T.; Vaddi, K.; Levy, R.; Moreland, L.A. Randomized placebo-controlled study of INCB018424, a selective janus 1 & 2 (JAK1&2) inhibitor in rheumatoid arthritis (RA). Arthritis Rheum.?2008, 58 (Suppl.), S431.
[51]  Malemud, C.J. Dysfunctional immune-mediated inflammation in rheumatoid arthritis dictates that development of anti-rheumatic disease drugs target multiple signaling pathways. Anti-Inflam. Anti-Allergy Agents Med. Chem.?2010. in Press.
[52]  Pardanani, A.; Hood, J.; Lasho, T.; Levine, R.L.; Martin, M.B.; Noronha, G.; Finke, C.; Mak, C.C.; Mesa, R.; Zhu, H.; Soll, R.; Gilliland, D.G.; Tefferi, A. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia?2007, 21, 1658–1668, doi:10.1038/sj.leu.2404750. 17541402
[53]  Wang, Y.; Fiskus, W.; Chong, D.G.; Buckley, K.M.; Natarajan, K.; Rao, R.; Joshi, A.; Balusu, R.; Koul, S.; Chen, J.; Savoie, A.; Ustun, C.; Jillella, A.P.; Atadja, P.; Levine, R.L.; Bhalla, K.N. Cotreatment with panobinostat and JAK2 inhibitor, TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood?2009, 114, 5024–5033. 19828702
[54]  Ellis, L.; Pan, Y.; Smyth, G.K.; George, D.J.; McCormack, C.; Williams-Traus, R.; Mita, M.; Beck, J.; Burris, H.; Ryan, G.; Atadja, P.; Butterfoss, D.; Dugan, M.; Culver, K.; Johnstone, R.W.; Miles Prince, H. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphomas. Clin. CancerRes.?2008, 14, 4500–4510, doi:10.1158/1078-0432.CCR-07-4262.
[55]  Ellis, L.; Bots, M.; Lindemann, R.K.; Bolden, J.E.; Newbold, A.; Cluse, L.A.; Scott, C.L.; Strasser, A.; Atadja, P.; Lowe, S.W.; Johnstone, R.W. The histone deacetylase inhibitors, LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood?2009, 114, 380–393. 19383971
[56]  Garcia, S.; Liz, M.; Gómez-Reino, J.J.; Conde, C. Akt activity protects rheumatoid synovial fibroblasts from Fas-induced apoptosis by inhibition of Bid cleavage. Arthritis Res. Ther.?2010, 12, R33.
[57]  Malemud, C.J. Small molecular weight inhibitors of stress-activated and mitogen-activated protein kinases. Mini Rev. Med. Chem.?2006, 6, 689–698.
[58]  Malemud, C.J. Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways. Curr. Opin. Pharmacol.?2007, 7, 339–343.
[59]  Cohen, S.B.; Cheng, T.T.; Chinadore, V.; Damjanov, N.; Burgos-Vargas, R.; Delora, P.; Zimany, K.; Travers, H.; Caulfield, J.P. Evaluation of the efficacy and safety of pamapimod, a p38 kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum.?2009, 60, 335–344, doi:10.1002/art.24266.
[60]  Damjanov, N.; Kauffman, R.S.; Spencer-Green, G.T. Efficacy, pharmacodynamics and safety of VX-702, a novel p38 MAPK inhibitor in rheumatoid arthritis: Results of two randomized, double-blind, placebo-controlled clinical trials. Arthritis Rheum.?2009, 60, 1232–1241, doi:10.1002/art.24485. 19404957
[61]  Genovese, M.C. Inhibition of p38: has the fat lady sung? Arthritis Rheum.?2009, 60, 317–320, doi:10.1002/art.24264. 19180514

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133