全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms

DOI: 10.3390/ph3072163

Keywords: cannabis, hyperemesis, CB 1 receptor, pharmacokinetic, pharmacodynamic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cannabinoids are used clinically on a subacute basis as prophylactic agonist antiemetics for the prevention of nausea and vomiting caused by chemotherapeutics. Cannabinoids prevent vomiting by inhibition of release of emetic neurotransmitters via stimulation of presynaptic cannabinoid CB 1 receptors. Cannabis-induced hyperemesis is a recently recognized syndrome associated with chronic cannabis use. It is characterized by repeated cyclical vomiting and learned compulsive hot water bathing behavior. Although considered rare, recent international publications of numerous case reports suggest the contrary. The syndrome appears to be a paradox and the pathophysiological mechanism(s) underlying the induced vomiting remains unknown. Although some traditional hypotheses have already been proposed, the present review critically explores the basic science of these explanations in the clinical setting and provides more current mechanisms for the induced hyperemesis. These encompass: (1) pharmacokinetic factors such as long half-life, chronic exposure, lipid solubility, individual variation in metabolism/excretion leading to accumulation of emetogenic cannabinoid metabolites, and/or cannabinoid withdrawal; and (2) pharmacodynamic factors including switching of the efficacy of Δ 9-THC from partial agonist to antagonist, differential interaction of Δ 9-THC with Gs and Gi signal transduction proteins, CB 1 receptor desensitization or downregulation, alterations in tissue concentrations of endocannabinoid agonists/inverse agonists, Δ 9-THC-induced mobilization of emetogenic metabolites of the arachidonic acid cascade, brainstem versus enteric actions of Δ 9-THC, and/or hypothermic versus hyperthermic actions of Δ 9-THC. In addition, human and animal findings suggest that chronic exposure to cannabis may not be a prerequisite for the induction of vomiting but is required for the intensity of emesis.

References

[1]  Allen, J.H.; de Moore, G.M.; Heddle, R.; Twartz, J.C. Cannabinoid hyperemesis: cyclical hyperemesis in association with chronic cannabis abuse. Gut?2004, 53, 1566–1570, doi:10.1136/gut.2003.036350. 15479672
[2]  Boeckxtaens, G.E. Cannabinoid hyperemesis with the unusual symptom of compulsive bathing. Ned. Tijdschr Geneeskd?2005, 149, 1970. 16159040
[3]  Roche, E.; Foster, P.N. Cannabinoid hyperemesis: not just a problem in Adelaide Hills. Gut?2005, 54, 731, doi:10.1136/gut.2004.057471. 15831930
[4]  Roelofs, J.; Vorel, S.K.; Vorel-Havelkova, E.; Brombacher, P.J. Cannabinoid hyperemesis with the unusual symptom of compulsive bathing. Ned. Tijdschr Geneeskd?2005, 149, 1468–1471. 16010960
[5]  Alfonso-Moreno, V.; Ojesa, F.; Moreno-Osset, E. Cannabinoid hyperemisis. Gastroenterol. Hepatol.?2006, 29, 434–435, doi:10.1157/13091459. 16938265
[6]  Wallace, D.; Martin, A-L.; Park, B. Cannabinoid hyperemesis: marijuana puts patients in hot water. Australasian Psychiatry?2007, 15, 156–158, doi:10.1080/10398560701196778. 17464661
[7]  Budhraja, V.; Narang, T.; Azees, S. Cannabinoid hyperemesis syndrome:cyclic vomiting and compulsive vomiting, chronic cannabis use, and compulsive bathing. Pract. Gastroenterol.?2008, 32, 79–80.
[8]  Chang, Y.H.; Windish, D.M. Cannabinoid hyperemesis relieved by compulsive bathing. Mayo Clin. Proc.?2009, 84, 76–78. 19121257
[9]  Donnino, M.W.; Cocchi, M.N.; Miller, J.; Fisher, J. Cannabinoid hyperemesis: A case series. J. Em. Med.?2009.
[10]  Sontineni, S.P.; Chaudhary, S.; Sontineni, V.; Lanspa, S.J. Cannabinoid hyperemesis syndrome: clinical diagnosis of an underrecognized manifestation of chronic cannabis use. World J. Gastroenterol.?2009, 15, 1264–1265, doi:10.3748/wjg.15.1264. 19291829
[11]  Watts, M. Cannabinoid hyperemesis presenting to a New Zealand hospital. N. Z. Med. J.?2009, 122, 116–118. 19465956
[12]  Ochoa-Mangado, E.; Jimenez Gimenez, M.; Saldado Vadillo, E.; Madoz-Gurpide, A. Cyclical hyperemesis secondary to cannabis abuse. Gastroenterol. Hepatol.?2009, 32, 406–409, doi:10.1016/j.gastrohep.2009.02.002. 19477551
[13]  Soriano-Co, M.; Batke, M.; Cappell, M.S. The cannabis hyperemesis syndrome characterized by persistent nausea and vomiting, abdominal pain, and compulsive bathing associated with chronic marijuana use: a report of eight cases in the United States. Dig. Dis. Sci.?2010.
[14]  Sullivan, S. cannabinoid hyperemesis. Can. J. Gastrornterol.?2010, 24, 284–285.
[15]  Abell, T.L.; Adams, K.A.; Boles, R.G.; Bousvaros, A.; Chong, S.K.F.; Fleisher, D.R.; Hasler, W.L.; Hyman, p.E.; Issenman, R.M.; Li, B.U.K.; Linder, S.L.; Mayer, E.A.; McCallum, R.W.; Olden, K.; Parkman, H.P.; Rudolph, C.D.; Tache, Y.; Tarbell, S.; Vakil, N. Cyclic vomiting syndrome in adults. Neurogastrointerol. Motil.?2008, 20, 269–284, doi:10.1111/j.1365-2982.2008.01113.x.
[16]  Darmani, N.A. Antiemetic action of Δ9-tetrahydrocannabinoid and synthetic cannabinoids. In Biology of Marijuana: From Gene to Behavior; Onaivi, E.S., Ed.; Taylor and Francis Books Ltd.: London, UK, 2002; pp. 356–389.
[17]  Darmani, N.A.; Ray, A.P. A re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem. Rev.?2009, 109, 3158–3199, doi:10.1021/cr900117p. 19522506
[18]  Darmani, N.A. Delta (9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid antagonist/inverse agonist SR141716A. Neuropsychopharmacology?2001, 24, 198–203, doi:10.1016/S0893-133X(00)00197-4. 11120402
[19]  Di Marzo, V. Endocannabinoids: synthesis and degradation. Rev. Physiol. Biochem. Pharmacol.?2008, 160, 1–24. 18481028
[20]  Pacher, P.; Mukhopadhyay, P.; Mohanraj, R.; Godlewski, G.; Bátkai, S.; Kunos, G. Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension?2008, 52, 601–607, doi:10.1161/HYPERTENSIONAHA.105.063651. 18779440
[21]  Panikashvili, D.; Mechoulam, R.; Beni, S.M.; Alexandrovich, A.; Shohami, D. CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J. Cereb. Blood Flow Metab.?2005, 25, 477–488, doi:10.1038/sj.jcbfm.9600047. 15729296
[22]  Watson, S.J.; Benson, J.A.; Joy, J.E. Marijuana and Medicine: assessing the science base: a summary of the 1999 Institute of Medicine Report. Arch. Gen. Psychiat.?2000, 57, 547–552, doi:10.1001/archpsyc.57.6.547. 10839332
[23]  Kwiatkowska, M.; Parker, L.A.; Burton, P.; Mechoulam, R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology?2004, 174, 254–259. 14740147
[24]  Del Mar Ramirez Fernandez, M.; De Boeck, G.; Wood, M.; Lopez-Rivadulla, M.; Samyn, N. Simultaneous analysis of THC and its metabolites in blood using liquid chromatography-tandem mass spectrometry. J. Chromator. Analyt. Technol. Biomed. Life Sci.?2008, 875, 465–470, doi:10.1016/j.jchromb.2008.09.032.
[25]  Crowley, T.J.; Macdonald, M.J.; Whitmore, E.A.; Mikulich, S.K. Cannabis dependence, withdrawal, and reinforcing effects among adolescents with conduct symptoms and substance use disorders. Drug Alcohol Depend.?1998, 50, 27–37. 9589270
[26]  Lichtman, A.H.; Wiley, J.L.; LaVecchia, K.L.; Neviaser, S.T.; Arthur, D.B.; Wilson, D.M.; Martin, B.R. Effects of SR141716A after acute or chronic cannabinoid administration in dogs. Eur. J. Pharmacol.?1998, 357, 139–148, doi:10.1016/S0014-2999(98)00558-5. 9797029
[27]  Kenakin, T.P. A Pharmacology Primer, 3rd ed.; Elsevier-Academin Press: San diego, CA, USA, 2009; pp. 21–59.
[28]  Sugiura, T.; Waku, K. 2-arachidonoylglycerol and the cannabinoid receptors. Chem. Phys. Lipids.?2000, 108, 89–106, doi:10.1016/S0009-3084(00)00189-4. 11106784
[29]  Roloff, A.M.; Thayer, S.A. Modulation of excitatory synaptic transmission by delta 9-tetrahydrocannabinol swithches from agonist to antagonist depending on the firing rate. Mol. Pharmacol.?2009, 75, 892–900, doi:10.1124/mol.108.051482. 19118122
[30]  Schlicker, E.; Kathman, M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol.Sci.?2001, 22, 565–572, doi:10.1016/S0165-6147(00)01805-8. 11698100
[31]  Nakazi, M.; Bauer, U.; Nickel, T.; Kathman, M.; Schlicker, E. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn-Schmeideberg’s Arch. Pharmacol.?2000, 361, 19–24, doi:10.1007/s002109900147.
[32]  Darmani, N.A.; Janoyan, J.J.; Kumar, N.; Crim, J.L. Behaviorally active doses of the CB1 receptor antagonist increase brain serotonin and dopamine levels and turnover. Pharmacol. Biochem. Behav.?2003, 75, 777–787, doi:10.1016/S0091-3057(03)00150-3. 12957219
[33]  Nemeth, J.; Heleyes, Z.; Than, M.; Jakab, B.; Pinter, E.; Szolcsanyi, J. Concentration-dependent dual effect of anandamide on sensory neuropeptide release from isolated rat trachea. Neurosci.Letters?2003, 336, 89–92, doi:10.1016/S0304-3940(02)01221-1.
[34]  Sulcova, E.; Mechoulam, R.; Fride, E. Biphasic effects of anandamide. Pharmacol. Biochem. Behav.?1998, 59, 347–352, doi:10.1016/S0091-3057(97)00422-X. 9476980
[35]  Darmani, N.A. delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB1 receptors in the least shrew. Pharmacol. Biochem. Behav.?2001, 69, 239–249, doi:10.1016/S0091-3057(01)00531-7. 11420092
[36]  Wickens, A.P.; Pertwee, R.G. Effect of D9-tetrahydrocannabinol on circling in rats induced by intranigral muscimol administration. Eur. J. Pharmacol.?1995, 282, 251–254, doi:10.1016/0014-2999(95)00346-M. 7498284
[37]  Turkanis, S.A.; Karler, R. Excitatory and depressant effects of delta-9-tetrahydrocannabinol and cannabidiol on cortical evoked responses in the conscious rat. Psychopharmacology?1981, 75, 294–298, doi:10.1007/BF00432442. 6275447
[38]  Rodriguez de Fonseca, F.; Rubio, P.; Menzaghi, F.; Merlo-Pich, E.; Rivier, J.; Koob, G.F.; Navarro, M. Corticotropin-releasing factor (CRF) antagonist [D-Phe12, N1e21,38, CαMeLeu37] CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behavior in rats. J. Pharmacol. Exp. Ther.?1996, 276, 56–63. 8558457
[39]  Lundberg, D.J.; Daniel, A.R.; Thayer, S.A. Δ9-Tetrahydrocannabinol-induced desensitization cannabinoid-mediated inhibition of synaptic transmission between hippocampal neurons in culture. Neuropharmacology?2005, 49, 1170–1177. 16157354
[40]  Martin, B.R.; Sim-Selley, L.J.; Selley, D.E. Signalling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol. Sci.?2004, 25, 325–330, doi:10.1016/j.tips.2004.04.005. 15165748
[41]  Sim, L.J.; Hampson, R.E.; Deadwyler, S.A.; Childers, S.R. Effects of chronic treatment with delta-9-tetrahydrocannabinol on cannabinoid-stimulated [s-35]GTP-Gamma-S autoradiography in rat brain. J. Neurosci.?1996, 16, 8057–8066. 8987831
[42]  Di Marzo, V. The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol. Res.?2009, 60, 77–84, doi:10.1016/j.phrs.2009.02.010. 19559360
[43]  Bergman, J.; delatte, M.S.; Paronis, C.A.; Vemuri, K.; Thakur, G.A.; Makriyannis, A. Some effects of CB1 antagonists with inverse agonist and neutral biochemical properties. Physiol. Behav.?2008, 93, 666–670, doi:10.1016/j.physbeh.2007.11.007. 18076956
[44]  Vaziri, N.D.; Thomas, R.; Sterling, M.; Seiff, K.; Pahl, M.V.; Davila, J.; Wilson, A. Toxicity with intravenous injection of crude marijuana extract. Clin. Toxicol.?1981, 18, 353–366, doi:10.3109/15563658108990042. 7237964
[45]  Martin, B.R. The use of cannabinoids in patients with chronic illness. US Pharmacist.?2002, 27, 61–70.
[46]  Frytak, S.; Moertel, C.G.; O’Fallen, J.R.; Rubib, J.; Creagen, E.T.; O’Connel, M.J.; Schutt, A.J.; Schwartan, N.W. Delta-9-tetrahydrocannabinol as an antiemetic for patients receiving chemotherapy: a comparison with prochorperazine and placebo. Ann. Intern. Med.?1979, 91, 825–830, doi:10.7326/0003-4819-91-6-825. 517882
[47]  Noyes, R.; Brunk, S.F.; Avery, D.H.; Carter, R. The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin. Pharmacol.?1975, 18, 84–89.
[48]  Orr, L.E.; McKernan,, J.F. Antiemetic effect of Δ9-tetrahydrocannabinol in chemotherapy-associated nausea and vomiting as compared to placebo and compazine. J. Clin. pharmacol. Ther.?1980, 21, 76–80.
[49]  Shannon, H.E.; Martin, W.R.; Silcox, D. Lack of antiemetic effects of Δ9-tetrahydrocannabinol in apomorphine-induced emesis in the dog. Life Sci.?1978, 23, 49–54, doi:10.1016/0024-3205(78)90324-7. 682866
[50]  Berdyshev, E.V.; Boichot, E.; Germain, N.; Allain, N.; Anger, J.-P.; Lagente, V. Influence of fatty acid ethanolamides and Δ9-tetrahydrocannabinol on cytokine and arachidonate by mononuclear cells. Eur. J. Pharmacol.?1997, 330, 231–240, doi:10.1016/S0014-2999(97)01007-8. 9253958
[51]  Hunter, S.A.; Burstein, S.H. Receptor mediation in cannabinoid stimulated arachidonic acid mobilization and anandamide synthesis. Life Sci.?1997, 60, 1563–1573, doi:10.1016/S0024-3205(97)00122-7. 9126878
[52]  Darmani, N.A. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by Δ9-tetrahydrocannabinol and other cannabinoids. J. Pharmacol. Exp. Therap.?2002, 300, 34–42, doi:10.1124/jpet.300.1.34.
[53]  Darmani, N.A. Endocannabinoids and gastrointestinal function. In Endocannabinoids: The Brain and Body’s Marijuana and Beyond; Onaivi, E.S., Sigiura, T., Di Marzo, V., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 393–418.
[54]  Chebolu, S.; Wang, Y.; Ray, A.P.; Darmani, N.A. Pranlukast prevents cysteinyl leukotriene-induced emesis in the least shrew (Cryptotis parva). Eur. J. Pharmacol.?2010, 628, 195–201, doi:10.1016/j.ejphar.2009.11.030. 19941848
[55]  Nabemoto, M.; Mashimo, M.; Someya, A.; Nakamura, H.; Hirabayashi, T.; Fujino, H.; Kaneko, M.; Okuma, Y.; Saito, T.; Yamaguchi, N.; Murayama, T. Release of arachidonic acid by 2-arachidonoyl glycerol and HU210 in PC12 cells; roles of Src, phospholipase C and cytosolic phospholipase A2α. Eur. J. Pharmacol.?2008, 590, 1–11. 18539271
[56]  Atack, J.R. Anxioselective compounds acting at the GABA(A) receptor benzodiazepine binding site. Curr.Drug Targets CNS Neurol. Disord.?2003, 2, 213–232, doi:10.2174/1568007033482841. 12871032
[57]  Newman-Tancredi, A.; Conte, C.; Chaput, C.; Spedding, M.; Millan, M.J. Inhibition of the constitutive activity of human 5-HT1A receptors by the inverse agonist, spiperone but not the neutral antagonist, WAY 100,635. Br. J. Pharmacol.?1997, 120, 737–739. 9138675
[58]  Heimann, A.S.; Gomes, I.; Dale, C.S.; Pagano, R.L.; Gupta, A.; de Souza, L.L.; Luchessi, A.D.; Castro, L.M.; Giorgi, R.; Rioli, V.; Ferro, E.S.; Devi, L.A. Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc. Natl. Acad. Sci. USA?2007, 104, 20588–20593, doi:10.1073/pnas.0706980105. 18077343
[59]  Parker, L.A.; Mechoulam, R.; Schlievert, C.; Abbott, L.; Fudge, M.L.; Burton, P. Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea. Psychopharmacology?2003, 166, 156–162. 12528012
[60]  Parker, L.A.; Limebeer, C.L.; Rock, E.M.; Litt, D.L.; Kwiatkowska, M.; Piomelli, D. The FAAH inhibitor URB-597 intereferes with cisplatin- and nicotine-induced vomiting in the Suncus murinus (house musk shrew). Physiol. Behav.?2009, 97, 121–124, doi:10.1016/j.physbeh.2009.02.014. 19239915
[61]  Parker, L.A.; Limebeer, C.L. Conditioned gaping in rats: a selective measure of nausea. Auton. Neurosci.?2006, 129, 36–41. 16950662
[62]  Pi-Sunyer, F.X.; Aronne, L.J.; Heshmati, H.M.; Devin, j.; Rosenstock, J. RIO-North America Study Group Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized control trial. J. Am. Med. Assoc.?2006, 295, 761–775, doi:10.1001/jama.295.7.761.
[63]  Van Gall, L.F.; Pfeiffer, E. New approaches for the management of patients with multiple cardiometabolic risk factors. J. Endocrinol. Investig.?2006, 29, 83–89.
[64]  Darmani, N.A.; McClanahan, B.A.; Trinh, C.; Petrosino, S.; Valenti, M.; Di Marzo, V. Cisplatin increases 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology?2005, 49, 502–513, doi:10.1016/j.neuropharm.2005.04.007. 15921709
[65]  Izzo, A.A.; Sharkey, K.A. Cannabinoids and the gut:new developments and emerging concepts. Pharmacol. Therap.?2010, 126, 21–38, doi:10.1016/j.pharmthera.2009.12.005.
[66]  Partosoedarso, E.R.; Abrahams, T.P.; Scullion, R.; Moerschbaecher, J.M.; Hornby, P.J. Cannabinoid 1 receptor in the dorsal vagal complex modulates lower esophageal sphincter relaxation in ferrets. J. Phsiol.?2003, 550, 149–158, doi:10.1113/jphysiol.2003.042242.
[67]  Krowicki, Z.K.; Moerschbacher, J.M.; Winsauer, P.J.; Digavalli, S.V.; Hornby, P.J. Delta9-Tetrahydrocannabinol inhibits gastric motility in the rat through cannabinoid CB1 receptors. Eur. J. Pharmacol.?1999, 371, 187–196, doi:10.1016/S0014-2999(99)00165-X. 10357256
[68]  Darmani, N.A.; Johnson, J.C. Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. Eur. J. Pharmacol.?2004, 288, 201–212.
[69]  Lehmann, A.; Blackshaw, L.A.; Brandon, L.; Carlson, A.; Jensen, J.; Nygren, E.; Smid, S.D. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxation and reflux in dogs. Gastroenterology?2002, 123, 1129–1134, doi:10.1053/gast.2002.36025. 12360475
[70]  Benarroch, E.E. Thermoregulation: recent concepts and remaining questions. Neurology?2007, 69, 1293–1297, doi:10.1212/01.wnl.0000275537.71623.8e. 17875917
[71]  Moldrich, G.; Wenger, T. Localization of the CB1 cannabinoid receptor in the rat brain. Peptides?2000, 21, 1735–1742, doi:10.1016/S0196-9781(00)00324-7. 11090929
[72]  Wiley, J.L.; Razdan, R.K.; Martin, B.R. Evaluation of the role of the arachidonic acid cascade in anandamide’s in vivo effects in mice. Life Sci.?2006, 80, 24–35, doi:10.1016/j.lfs.2006.08.017. 16978656
[73]  Smirnov, M.S.; Kiyatkin, E.A. Behavioral and temperature effects of delta 9-tetrahydrocannabinol in human-relevant doses in rats. Brain Res.?2008, 1228, 145–160, doi:10.1016/j.brainres.2008.06.069. 18619424
[74]  Fennessy, M.R.; Taylor, D.A. The effect of delta-9-tetrahydrocannabinol on body temperature and brain amine concentrations in the rat at different ambient temperatures. Br. J. Pharmacol.?1977, 60, 65–71, doi:10.1111/j.1476-5381.1977.tb16748.x. 884391
[75]  Baker, M.; Cronin, M.; Mountjoy, D. Variability in skin temperature in the walking monkey. Am. J. Physiol.?1976, 230, 244–255.
[76]  Bae, D.D.; Leon Brown, P.; Kiyatkin, E.A. Procedure of rectal temperature measurement affects brain, muscle, skin, and body temperatures and modulates the effects of intravenous cocaine. Brain Res.?1154, 61–70.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133