全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protein Kinases as Drug Development Targets for Heart Disease Therapy

DOI: 10.3390/ph3072111

Keywords: protein kinase A, protein kinase C, Ca2+ calmodulin protein kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase

Full-Text   Cite this paper   Add to My Lib

Abstract:

Protein kinases are intimately integrated in different signal transduction pathways for the regulation of cardiac function in both health and disease. Protein kinase A (PKA), Ca 2 +-calmodulin-dependent protein kinase (CaMK), protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are not only involved in the control of subcellular activities for maintaining cardiac function, but also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some of their effects are cardioprotective whereas others are detrimental. Such opposing effects of each signal transduction pathway seem to depend upon the duration and intensity of stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most of these kinases are activated in heart disease and their inhibition has been shown to improve cardiac function, it is suggested that these kinases form excellent targets for drug development for therapy of heart disease.

References

[1]  Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature?1984, 308, 693–698.
[2]  Wood, J.S.; Yan, X.; Mendelow, M.; Corbin, J.D.; Francis, S.H.; Lawrence, D.S. Precision substrate targeting of protein kinases. The cGMP- and cAMP-dependent protein kinases. J. Biol. Chem.?1996, 271, 174–179. 8550555
[3]  Dhalla, N.S.; Wang, J. Role of protein kinase C and protein kinase A in heart function in health and disease. Exp. Clin. Cardiol.?1999, 4, 7–14.
[4]  Feuerstein, G.Z.; Young, P.R. Apoptosis in cardiac diseases: Stress- and mitogen-activated signaling pathways. Cardiovasc. Res.?2000, 45, 560–569.
[5]  Sugden, P.H.; Bogoyevitch, M.A. Intracellular signaling through protein kinases in the heart. Cardiovasc. Res.?1995, 30, 478–492.
[6]  Sadoshima, J.; Qiu, Z.; Morgan, J.P.; Izumo, S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca2+-dependent signaling. Circ. Res.?1995, 76, 1–15. 8001266
[7]  Kemp, B.E.; Bylund, D.B.; Huang, T.S.; Krebs, E.G. Substrate specificity of the cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA?1975, 72, 3448–3452.
[8]  Taylor, S.S.; Buechler, J.A.; Yonemoto, W. cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem.?1990, 59, 971–1005.
[9]  Opie, L.H. Receptors and signal transduction. In The Heart, Physiology and Metabolism; Opie, L.H., Ed.; Raven Press: New York, NY, USA, 1991; pp. 147–175.
[10]  Barefield, D.; Sadayappan, S. Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J. Mol. Cell. Cardiol.?2010, 48, 866–875.
[11]  Baryshnikova, O.K.; Li, M.X.; Sykes, B.D. Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin I: Influence of PKA phosphorylation and involvement in cardiomyopathies. J. Mol. Biol.?2008, 375, 735–751.
[12]  Jones, P.P.; Meng, X.; Xiao, B.; Cai, S.; Bolstad, J.; Wagenknecht, T.; Liu, Z.; Chen, S.R. Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor. Biochem. J.?2008, 410, 261–270. 17967164
[13]  Li, J.; Bigelow, D.J.; Squier, T.C. Conformational changes within the cytosolic portion of phospholamban upon release of Ca-ATPase inhibition. Biochemistry?2004, 43, 3870–3879.
[14]  Wolff, M.R.; Buck, S.H.; Stoker, S.W.; Greaser, M.L.; Mentzer, R.M. Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: Role of altered beta-adrenergically mediated protein phosphorylation. J. Clin. Invest.?1996, 98, 167–176.
[15]  Bogoyevitch, M.A.; Fuller, S.J.; Sugden, P.H. cAMP and protein synthesis in isolated adult rat heart preparations. Am. J. Physiol. Cell. Physiol.?1993, 265, C1247–C1257.
[16]  Bohm, M.; Reiger, B.; Schwinger, R.H.; Erdmann, E. cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in non-failing and failing myocardium. Cardiovasc. Res.?1994, 28, 1713–1719, doi:10.1093/cvr/28.11.1713. 7842467
[17]  Haase, H.; Karczewski, P.; Beckert, R.; Krause, E.G. Phosphorylation of the L-type calcium channel beta subunit is involved in beta-adrenergic signal transduction in canine myocardium. FEBS Lett.?1993, 335, 217–222.
[18]  Perets, T.; Blumenstein, Y.; Shistik, E.; Lotan, I.; Dascal, N. A potential site of functional modulation by protein kinase A in the cardiac Ca2+ channel alpha 1C subunit. FEBS Lett.?1996, 384, 189–192.
[19]  Milano, C.A.; Allen, L.F.; Rockman, H.A.; Dolber, P.C.; McMinn, T.R.; Chien, K.R.; Johnson, T.D.; Bond, R.A.; Lefkowitz, R.J. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science?1994, 264, 582–586.
[20]  Goldspink, P.H.; Russell, B. The cAMP response element binding protein is expressed and phosphorylated in cardiac myocytes. Circ. Res.?1994, 74, 1042–1049.
[21]  Phrommintikul, A.; Chattipakorn, N. Roles of cardiac ryanodine receptor in heart failure and sudden cardiac death. Int. J. Cardiol.?2006, 112, 142–152.
[22]  Mattiazzi, A.; Hove-Madsen, L.; Bers, D.M. Protein kinase inhibitors reduce SR Ca transport in permeabilized cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol.?1994, 267, H812–H820.
[23]  Sichelschmidt, O.J.; Hahnefeld, C.; Hohlfeld, T.; Herberg, F.W.; Schror, K. Trapidil protects ischemic hearts from reperfusion injury by stimulating PKAII activity. Cardiovasc. Res.?2003, 58, 602–610.
[24]  Schmitt, J.P.; Ahmad, F.; Lorenz, K.; Hein, L.; Schulz, S.; Asahi, M.; Maclennan, D.H.; Seidman, C.E.; Seidman, J.G.; Lohse, M.J. Alterations of phospholamban function can exhibit cardiotoxic effects independent of excessive sarcoplasmic reticulum Ca2+-ATPase inhibition. Circulation?2009, 119, 436–444.
[25]  Xiao, B.; Zhong, G.; Obayashi, M.; Yang, D.; Chen, K.; Walsh, M.P.; Shimoni, Y.; Cheng, H.; Ter Keurs, H.; Chen, S.R. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts. Biochem. J.?2006, 396, 7–16, doi:10.1042/BJ20060116. 16483256
[26]  Morimoto, S.; J, O.U.; Kawai, M.; Hoshina, T.; Kusakari, Y.; Komukai, K.; Sasaki, H.; Hongo, K.; Kurihara, S. Protein kinase A-dependent phosphorylation of ryanodine receptors increases Ca2+ leak in mouse heart. Biochem. Biophys. Res. Commun.?2009, 390, 87–92.
[27]  Pogwizd, S.M.; Bers, D.M. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc. Med.?2004, 14, 61–66.
[28]  Zakhary, D.R.; Moravec, C.S.; Bond, M. Regulation of PKA binding to AKAPs in the heart: alterations in human heart failure. Circulation?2000, 101, 1459–1464.
[29]  Zakhary, D.R.; Moravec, C.S.; Stewart, R.W.; Bond, M. Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation?1999, 99, 505–510.
[30]  Piddo, A.M.; Sanchez, M.I.; Sapag-Hagar, M.; Corbalan, R.; Foncea, R.; Ebensperger, R.; Godoy, I.; Melendez, J.; Jalil, J.E.; Lavandero, S. Cyclic AMP-dependent protein kinase and mechanical heart function in ventricular hypertrophy induced by pressure overload or secondary to myocardial infarction. J. Mol. Cell. Cardiol.?1996, 28, 1073–1083.
[31]  Dong, W.J.; Jayasundar, J.J.; An, J.; Xing, J.; Cheung, H.C. Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry?2007, 46, 9752–9761.
[32]  Tong, C.W.; Stelzer, J.E.; Greaser, M.L.; Powers, P.A.; Moss, R.L. Acceleration of crossbridge kinetics by protein kinase A phosphorylation of cardiac myosin binding protein C modulates cardiac function. Circ. Res.?2008, 103, 974–982.
[33]  El-Armouche, A.; Boknik, P.; Eschenhagen, T.; Carrier, L.; Knaut, M.; Ravens, U.; Dobrev, D. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation?2006, 114, 670–680.
[34]  Jacques, A.M.; Copeland, O.; Messer, A.E.; Gallon, C.E.; King, K.; McKenna, W.J.; Tsang, V.T.; Marston, S.B. Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle. J. Mol. Cell. Cardiol.?2008, 45, 209–216.
[35]  van Dijk, S.J.; Dooijes, D.; dos Remedios, C.; Michels, M.; Lamers, J.M.; Winegrad, S.; Schlossarek, S.; Carrier, L.; ten Cate, F.J.; Stienen, G.J.; van der Velden, J. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: Haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation?2009, 119, 1473–1483. 19273718
[36]  Ray, K.P.; England, P.J. Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase. FEBS Lett.?1976, 70, 11–16.
[37]  Holroyde, M.J.; Potter, J.D.; Solaro, R.J. The calcium binding properties of phosphorylated and unphosphorylated cardiac and skeletal myosins. J. Biol. Chem.?1979, 254, 6478–6482.
[38]  Kentish, J.C.; McCloskey, D.T.; Layland, J.; Palmer, S.; Leiden, J.M.; Martin, A.F.; Solaro, R.J. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res.?2001, 88, 1059–1065.
[39]  Herron, T.J.; Korte, F.S.; McDonald, K.S. Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes. Circ. Res.?2001, 89, 1184–1190.
[40]  VanBuren, P.; Okada, Y. Thin filament remodeling in failing myocardium. Heart Fail. Rev.?2005, 10, 199–209.
[41]  Makaula, S.; Lochner, A.; Genade, S.; Sack, M.N.; Awan, M.M.; Opie, L.H. H-89, a non-specific inhibitor of protein kinase A, promotes post-ischemic cardiac contractile recovery and reduces infarct size. J. Cardiovasc. Pharmacol.?2005, 45, 341–347, doi:10.1097/01.fjc.0000156825.80951.14. 15772523
[42]  Oddis, C.V.; Simmons, R.L.; Hattler, B.G.; Finkel, M.S. Protein kinase A activation is required for IL-1-induced nitric oxide production by cardiac myocytes. Am. J. Physiol. Cell. Physiol.?1996, 271, C429–434.
[43]  Zhang, X.H.; Li, G.R.; Bourreau, J.P. The effect of adrenomedullin on the L-type calcium current in myocytes from septic shock rats: signaling pathway. Am. J. Physiol. Heart Circ. Physiol.?2007, 293, H2888–2893.
[44]  Fontes-Sousa, A.P.; Pires, A.L.; Carneiro, C.S.; Bras-Silva, C.; Leite-Moreira, A.F. Effects of adrenomedullin on systolic and diastolic myocardial function. Peptides?2009, 30, 796–802.
[45]  Ishimitsu, T.; Nishikimi, T.; Saito, Y.; Kitamura, K.; Eto, T.; Kangawa, K.; Matsuo, H.; Omae, T.; Matsuoka, H. Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J. Clin. Invest.?1994, 94, 2158–2161, doi:10.1172/JCI117573. 7962564
[46]  Nishikimi, T.; Saito, Y.; Kitamura, K.; Ishimitsu, T.; Eto, T.; Kangawa, K.; Matsuo, H.; Omae, T.; Matsuoka, H. Increased plasma levels of adrenomedullin in patients with heart failure. J. Am. Coll. Cardiol.?1995, 26, 1424–1431.
[47]  Jougasaki, M.; Wei, C.M.; McKinley, L.J.; Burnett, J.C., Jr. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation?1995, 92, 286–289.
[48]  Yoshitomi, Y.; Nishikimi, T.; Kojima, S.; Kuramochi, M.; Takishita, S.; Matsuoka, H.; Miyata, A.; Matsuo, H.; Kangawa, K. Plasma levels of adrenomedullin in patients with acute myocardial infarction. Clin. Sci.?1998, 94, 135–139.
[49]  Nishida, H.; Sato, T.; Miyazaki, M.; Nakaya, H. Infarct size limitation by adrenomedullin: Protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels. Cardiovasc. Res.?2008, 77, 398–405.
[50]  Mery, P.F.; Pavoine, C.; Belhassen, L.; Pecker, F.; Fischmeister, R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J. Biol. Chem.?1993, 268, 26286–26295. 7902837
[51]  Shah, A.M.; Spurgeon, H.A.; Sollott, S.J.; Talo, A.; Lakatta, E.G. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ. Res.?1994, 74, 970–978.
[52]  Wahler, G.M.; Dollinger, S.J. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am. J. Physiol. Cell. Physiol.?1995, 268, C45–C54.
[53]  Olson, R.E. Myocardial metabolism in congestive heart failure. J. Chronic Dis.?1959, 9, 442–464.
[54]  Weber, K.T.; Brilla, C.G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation?1991, 83, 1849–1865. 1828192
[55]  Saini, H.K.; Xu, Y.J.; Zhang, M.; Liu, P.P.; Kirshenbaum, L.A.; Dhalla, N.S. Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp. Clin. Cardiol.?2005, 10, 213–222.
[56]  Murray, P.A.; Baig, H.; Fishbein, M.C.; Vatner, S.F. Effects of experimental right ventricular hypertrophy on myocardial blood flow in conscious dogs. J. Clin. Invest.?1979, 64, 421–427.
[57]  Yu, Q.J.; Si, R.; Zhou, N.; Zhang, H.F.; Guo, W.Y.; Wang, H.C.; Gao, F. Insulin inhibits beta-adrenergic action in ischemic/reperfused heart: A novel mechanism of insulin in cardioprotection. Apoptosis?2008, 13, 305–317.
[58]  Asai, M.; Tsukamoto, O.; Minamino, T.; Asanuma, H.; Fujita, M.; Asano, Y.; Takahama, H.; Sasaki, H.; Higo, S.; Asakura, M.; Takashima, S.; Hori, M.; Kitakaze, M. PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. J. Mol. Cell. Cardiol.?2009, 46, 452–462, doi:10.1016/j.yjmcc.2008.11.001. 19059265
[59]  Freude, B.; Masters, T.N.; Robicsek, F.; Fokin, A.; Kostin, S.; Zimmermann, R.; Ullmann, C.; Lorenz-Meyer, S.; Schaper, J. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J. Mol. Cell. Cardiol.?2000, 32, 197–208.
[60]  Scarabelli, T.; Stephanou, A.; Rayment, N.; Pasini, E.; Comini, L.; Curello, S.; Ferrari, R.; Knight, R.; Latchman, D. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation?2001, 104, 253–256.
[61]  Gottlieb, R.A.; Burleson, K.O.; Kloner, R.A.; Babior, B.M.; Engler, R.L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest.?1994, 94, 1621–1628.
[62]  Kajstura, J.; Cheng, W.; Reiss, K.; Clark, W.A.; Sonnenblick, E.H.; Krajewski, S.; Reed, J.C.; Olivetti, G.; Anversa, P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest.?1996, 74, 86–107.
[63]  Guerra, S.; Leri, A.; Wang, X.; Finato, N.; Di Loreto, C.; Beltrami, C.A.; Kajstura, J.; Anversa, P. Myocyte death in the failing human heart is gender dependent. Circ. Res.?1999, 85, 856–866.
[64]  Olivetti, G.; Abbi, R.; Quaini, F.; Kajstura, J.; Cheng, W.; Nitahara, J.A.; Quaini, E.; Di Loreto, C.; Beltrami, C.A.; Krajewski, S.; Reed, J.C.; Anversa, P. Apoptosis in the failing human heart. N. Engl. J. Med.?1997, 336, 1131–1141.
[65]  Granata, R.; Trovato, L.; Gallo, M.P.; Destefanis, S.; Settanni, F.; Scarlatti, F.; Brero, A.; Ramella, R.; Volante, M.; Isgaard, J.; Levi, R.; Papotti, M.; Alloatti, G.; Ghigo, E. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart. Cardiovasc. Res.?2009, 83, 303–312. 19293247
[66]  Kwak, H.J.; Park, K.M.; Choi, H.E.; Chung, K.S.; Lim, H.J.; Park, H.Y. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell. Signal.?2008, 20, 803–814.
[67]  Robinet, A.; Hoizey, G.; Millart, H. PI 3-kinase, protein kinase C, and protein kinase A are involved in the trigger phase of beta1-adrenergic preconditioning. Cardiovasc. Res.?2005, 66, 530–542, doi:10.1016/j.cardiores.2005.02.010. 15914118
[68]  Chae, H.J.; Chae, S.W.; Kim, H.R. Cyclic adenosine monophosphate inhibits nitric oxide-induced apoptosis of cardiac muscle cells in a c-Jun N-terminal kinase-dependent manner. Immunopharmacol. Immunotoxicol.?2004, 26, 249–263.
[69]  Prabu, S.K.; Anandatheerthavarada, H.K.; Raza, H.; Srinivasan, S.; Spear, J.F.; Avadhani, N.G. Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J. Biol. Chem.?2006, 281, 2061–2070.
[70]  Tombes, R.M.; Faison, M.O.; Turbeville, J.M. Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene?2003, 322, 17–31.
[71]  Hudmon, A.; Schulman, H. Neuronal Ca2+/calmodulin-dependent protein kinase II: The role of structure and autoregulation in cellular function. Annu. Rev. Biochem.?2002, 71, 473–510.
[72]  Hudmon, A.; Schulman, H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem. J.?2002, 364, 593–611.
[73]  De Koninck, P.; Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science?1998, 279, 227–230.
[74]  Lantsman, K.; Tombes, R.M. CaMK-II oligomerization potential determined using CFP/YFP FRET. Biochim. Biophys. Acta?2005, 1746, 45–54.
[75]  Hook, S.S.; Means, A.R. Ca(2+)/CaM-dependent kinases: From activation to function. Annu. Rev. Pharmacol. Toxicol.?2001, 41, 471–505.
[76]  Dzhura, I.; Wu, Y.; Colbran, R.J.; Balser, J.R.; Anderson, M.E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat. Cell. Biol.?2000, 2, 173–177.
[77]  Maier, L.S.; Bers, D.M. Calcium, calmodulin, and calcium-calmodulin kinase II: Heartbeat to heartbeat and beyond. J. Mol. Cell. Cardiol.?2002, 34, 919–939, doi:10.1006/jmcc.2002.2038. 12234763
[78]  Hain, J.; Onoue, H.; Mayrleitner, M.; Fleischer, S.; Schindler, H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J. Biol. Chem.?1995, 270, 2074–2081.
[79]  Sun, P.; Enslen, H.; Myung, P.S.; Maurer, R.A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev.?1994, 8, 2527–2539.
[80]  Kolodziej, S.J.; Hudmon, A.; Waxham, M.N.; Stoops, J.K. Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase II-alpha and truncated CaM kinase II-alpha reveal a unique organization for its structural core and functional domains. J. Biol. Chem.?2000, 275, 14354–14359.
[81]  Gaertner, T.R.; Kolodziej, S.J.; Wang, D.; Kobayashi, R.; Koomen, J.M.; Stoops, J.K.; Waxham, M.N. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J. Biol. Chem.?2004, 279, 12484–12494. 14722083
[82]  Kanaseki, T.; Ikeuchi, Y.; Sugiura, H.; Yamauchi, T. Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. J. Cell. Biol.?1991, 115, 1049–1060.
[83]  Palomeque, J.; Rueda, O.V.; Sapia, L.; Valverde, C.A.; Salas, M.; Petroff, M.V.; Mattiazzi, A. Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species. Circ. Res.?2009, 105, 1204–1212.
[84]  Xie, L.H.; Chen, F.; Karagueuzian, H.S.; Weiss, J.N. Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ. Res.?2009, 104, 79–86.
[85]  Maier, L.S.; Bers, D.M. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc. Res.?2007, 73, 631–640.
[86]  Wu, Y.; Temple, J.; Zhang, R.; Dzhura, I.; Zhang, W.; Trimble, R.; Roden, D.M.; Passier, R.; Olson, E.N.; Colbran, R.J.; Anderson, M.E. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation?2002, 106, 1288–1293.
[87]  Sag, C.M.; Wadsack, D.P.; Khabbazzadeh, S.; Abesser, M.; Grefe, C.; Neumann, K.; Opiela, M.K.; Backs, J.; Olson, E.N.; Brown, J.H.; Neef, S.; Maier, S.K.; Maier, L.S. Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ. Heart Fail.?2009, 2, 664–675.
[88]  Yurukova, S.; Kilic, A.; Volker, K.; Leineweber, K.; Dybkova, N.; Maier, L.S.; Brodde, O.E.; Kuhn, M. CaMKII-mediated increased lusitropic responses to beta-adrenoreceptor stimulation in ANP-receptor deficient mice. Cardiovasc. Res.?2007, 73, 678–688.
[89]  Chelu, M.G.; Sarma, S.; Sood, S.; Wang, S.; van Oort, R.J.; Skapura, D.G.; Li, N.; Santonastasi, M.; Müller, F.U.; Schmitz, W.; Schotten, U.; Anderson, M.E.; Valderrábano, M.; Dobrev, D.; Wehrens, X.H. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J. Clin. Invest.?2009, 119, 1940–1951.
[90]  Saito, T.; Fukuzawa, J.; Osaki, J.; Sakuragi, H.; Yao, N.; Haneda, T.; Fujino, T.; Wakamiya, N.; Kikuchi, K.; Hasebe, N. Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J. Mol. Cell. Cardiol.?2003, 35, 1153–1160.
[91]  Backs, J.; Backs, T.; Neef, S.; Kreusser, M.M.; Lehmann, L.H.; Patrick, D.M.; Grueter, C.E.; Qi, X.; Richardson, J.A.; Hill, J.A.; Katus, H.A.; Bassel-Duby, R.; Maier, L.S.; Olson, E.N. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc. Natl. Acad. Sci. USA.?2009, 106, 2342–2347.
[92]  Colomer, J.M.; Mao, L.; Rockman, H.A.; Means, A.R. Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo. Mol. Endocrinol.?2003, 17, 183–192. 12554746
[93]  Peng, W.; Zhang, Y.; Zheng, M.; Cheng, H.; Zhu, W.; Cao, C.M.; Xiao, R.P. Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ. Res.?2010, 106, 102–110.
[94]  Srinivasan, M.; Edman, C.F.; Schulman, H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J. Cell. Biol.?1994, 126, 839–852.
[95]  Kohlhaas, M.; Zhang, T.; Seidler, T.; Zibrova, D.; Dybkova, N.; Steen, A.; Wagner, S.; Chen, L.; Brown, J.H.; Bers, D.M.; Maier, L.S. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ. Res.?2006, 98, 235–244.
[96]  Kashiwase, K.; Higuchi, Y.; Hirotani, S.; Yamaguchi, O.; Hikoso, S.; Takeda, T.; Watanabe, T.; Taniike, M.; Nakai, A.; Tsujimoto, I.; Matsumura, Y.; Ueno, H.; Nishida, K.; Hori, M.; Otsu, K. CaMKII activates ASK1 and NF-kappaB to induce cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun.?2005, 327, 136–142.
[97]  Passier, R.; Zeng, H.; Frey, N.; Naya, F.J.; Nicol, R.L.; McKinsey, T.A.; Overbeek, P.; Richardson, J.A.; Grant, S.R.; Olson, E.N. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest.?2000, 105, 1395–1406. 10811847
[98]  Woischwill, C.; Karczewski, P.; Bartsch, H.; Luther, H.P.; Kott, M.; Haase, H.; Morano, I. Regulation of the human atrial myosin light chain 1 promoter by Ca2+-calmodulin-dependent signaling pathways. FASEB J.?2005, 19, 503–511.
[99]  Benter, I.F.; Juggi, J.S.; Khan, I.; Yousif, M.H.; Canatan, H.; Akhtar, S. Signal transduction mechanisms involved in cardiac preconditioning: Role of Ras-GTPase, Ca2+/calmodulin-dependent protein kinase II and epidermal growth factor receptor. Mol. Cell. Biochem.?2005, 268, 175–183.
[100]  Osada, M.; Netticadan, T.; Kawabata, K.; Tamura, K.; Dhalla, N.S. Ischemic preconditioning prevents I/R-induced alterations in SR calcium-calmodulin protein kinase II. Am. J. Physiol. Heart Circ. Physiol.?2000, 278, H1791–1798.
[101]  Netticadan, T.; Temsah, R.M.; Kawabata, K.; Dhalla, N.S. Sarcoplasmic reticulum Ca(2+)/Calmodulin-dependent protein kinase is altered in heart failure. Circ. Res.?2000, 86, 596–605.
[102]  MacDonnell, S.M.; Weisser-Thomas, J.; Kubo, H.; Hanscome, M.; Liu, Q.; Jaleel, N.; Berretta, R.; Chen, X.; Brown, J.H.; Sabri, A.K.; Molkentin, J.D.; Houser, S.R. CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ. Res.?2009, 105, 316–325.
[103]  Nishizuka, Y. Studies and perspectives of protein kinase C. Science?1986, 233, 305–312.
[104]  Bogoyevitch, M.A.; Parker, P.J.; Sugden, P.H. Characterization of protein kinase C isotype expression in adult rat heart. Protein kinase C-epsilon is a major isotype present, and it is activated by phorbol esters, epinephrine, and endothelin. Circ. Res.?1993, 72, 757–767. 8443867
[105]  Hambleton, M.; Hahn, H.; Pleger, S.T.; Kuhn, M.C.; Klevitsky, R.; Carr, A.N.; Kimball, T.F.; Hewett, T.E.; Dorn, G.W., 2nd; Koch, W.J.; Molkentin, J.D. Pharmacological- and gene therapy-based inhibition of protein kinase C-alpha/beta enhances cardiac contractility and attenuates heart failure. Circulation?2006, 114, 574–582. 16880328
[106]  Kraft, A.S.; Anderson, W.B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature?1983, 301, 621–623.
[107]  Mellor, H.; Parker, P.J. The extended protein kinase C superfamily. Biochem. J.?1998, 332, 281–292.
[108]  Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science?1992, 258, 607–614.
[109]  Toker, A.; Newton, A.C. Cellular Signaling: Pivoting around PDK-1. Cell?2000, 103, 185–188.
[110]  Liu, X.; Wang, J.; Takeda, N.; Binaglia, L.; Panagia, V.; Dhalla, N.S. Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes. Am. J. Physiol. Cell. Physiol.?1999, 277, E798–E804.
[111]  Gu, X.; Bishop, S.P. Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ. Res.?1994, 75, 926–931.
[112]  Braun, M.U.; LaRosee, P.; Simonis, G.; Borst, M.M.; Strasser, R.H. Regulation of protein kinase C isozymes in volume overload cardiac hypertrophy. Mol. Cell. Biochem.?2004, 262, 135–143.
[113]  Paul, K.; Ball, N.A.; Dorn, G.W., II.; Walsh, R.A. Left ventricular stretch stimulates angiotensin II--mediated phosphatidylinositol hydrolysis and protein kinase C epsilon isoform translocation in adult guinea pig hearts. Circ. Res.?1997, 81, 643–650. 9351436
[114]  Morgan, H.E.; Baker, K.M. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation?1991, 83, 13–25. 1824620
[115]  Komuro, I.; Katoh, Y.; Kaida, T.; Shibazaki, Y.; Kurabayashi, M.; Hoh, E.; Takaku, F.; Yazaki, Y. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J. Biol. Chem.?1991, 266, 1265–1268. 1702436
[116]  Sadoshima, J.; Jahn, L.; Takahashi, T.; Kulik, T.J.; Izumo, S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol. Chem.?1992, 267, 10551–10560. 1534087
[117]  Bayer, A.L.; Heidkamp, M.C.; Patel, N.; Porter, M.; Engman, S.; Samarel, A.M. Alterations in protein kinase C isoenzyme expression and autophosphorylation during the progression of pressure overload-induced left ventricular hypertrophy. Mol. Cell. Biochem.?2003, 242, 145–152.
[118]  Davidoff, A.J.; Davidson, M.B.; Carmody, M.W.; Davis, M.E.; Ren, J. Diabetic cardiomyocyte dysfunction and myocyte insulin resistance: Role of glucose-induced PKC activity. Mol. Cell. Biochem.?2004, 262, 155–163.
[119]  Wang, M.; Zhang, W.B.; Zhu, J.H.; Fu, G.S.; Zhou, B.Q. Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca(2+)-cycling proteins in streptozotocin-induced diabetic rats. Acta Diabetol.?2009.
[120]  Beckman, J.A.; Goldfine, A.B.; Gordon, M.B.; Garrett, L.A.; Creager, M.A. Inhibition of protein kinase C-beta prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans. Circ. Res.?2002, 90, 107–111.
[121]  Braz, J.C.; Gregory, K.; Pathak, A.; Zhao, W.; Sahin, B.; Klevitsky, R.; Kimball, T.F.; Lorenz, J.N.; Nairn, A.C.; Liggett, S.B.; Bodi, I.; Wang, S.; Schwartz, A.; Lakatta, E.G.; DePaoli-Roach, A.A.; Robbins, J.; Hewett, T.E.; Bibb, J.A.; Westfall, M.V.; Kranias, E.G.; Molkentin, J.D. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nature Med.?2004, 10, 248–254.
[122]  Hahn, H.S.; Marreez, Y.; Odley, A.; Sterbling, A.; Yussman, M.G.; Hilty, K.C.; Bodi, I.; Liggett, S.B.; Schwartz, A.; Dorn, G.W., II. Protein kinase Calpha negatively regulates systolic and diastolic function in pathological hypertrophy. Circ. Res.?2003, 93, 1111–1119.
[123]  Cotter, M.A.; Jack, A.M.; Cameron, N.E. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin. Sci.?2002, 103, 311–321.
[124]  Wu, Y.; Wu, G.; Qi, X.; Lin, H.; Qian, H.; Shen, J.; Lin, S. Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J. Pharmacol. Sci.?2006, 101, 335–343.
[125]  Connelly, K.A.; Kelly, D.J.; Zhang, Y.; Prior, D.L.; Advani, A.; Cox, A.J.; Thai, K.; Krum, H.; Gilbert, R.E. Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ. Heart Fail.?2009, 2, 129–137.
[126]  Fujita, M.; Minamino, T.; Asanuma, H.; Sanada, S.; Hirata, A.; Wakeno, M.; Myoishi, M.; Okuda, H.; Ogai, A.; Okada, K.; Tsukamoto, O.; Koyama, H.; Hori, M.; Kitakaze, M. Aldosterone nongenomically worsens ischemia via protein kinase C-dependent pathways in hypoperfused canine hearts. Hypertension?2005, 46, 113–117.
[127]  Boyle, A.J.; Kelly, D.J.; Zhang, Y.; Cox, A.J.; Gow, R.M.; Way, K.; Itescu, S.; Krum, H.; Gilbert, R.E. Inhibition of protein kinase C reduces left ventricular fibrosis and dysfunction following myocardial infarction. J. Mol. Cell. Cardiol.?2005, 39, 213–221.
[128]  Wang, J.; Liu, X.; Sentex, E.; Takeda, N.; Dhalla, N.S. Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.?2003, 284, H2277–H2287.
[129]  Liu, Q.; Chen, X.; Macdonnell, S.M.; Kranias, E.G.; Lorenz, J.N.; Leitges, M.; Houser, S.R.; Molkentin, J.D. Protein kinase Cα, but not PKCβ or PKCγ, regulates contractility and heart failure susceptibility: Implications for ruboxistaurin as a novel therapeutic approach. Circ. Res.?2009, 105, 194–200, doi:10.1161/CIRCRESAHA.109.195313. 19556521
[130]  Young, L.H.; Balin, B.J.; Weis, M.T. Go 6983: a fast acting protein kinase C inhibitor that attenuates myocardial ischemia/reperfusion injury. Cardiovasc. Drug Rev.?2005, 23, 255–272.
[131]  Peterman, E.E.; Taormina, P., II.; Harvey, M.; Young, L.H. Go 6983 exerts cardioprotective effects in myocardial ischemia/reperfusion. J. Cardiovasc. Pharmacol.?2004, 43, 645–656. 15071351
[132]  Omiyi, D.; Brue, R.J.; Taormina, P., II.; Harvey, M.; Atkinson, N.; Young, L.H. Protein kinase C βII peptide inhibitor exerts cardioprotective effects in rat cardiac ischemia/reperfusion injury. J. Pharmacol. Exp. Ther.?2005, 314, 542–551, doi:10.1124/jpet.104.082131. 15878997
[133]  Phillipson, A.; Peterman, E.E.; Taormina, P., Jr.; Harvey, M.; Brue, R.J.; Atkinson, N.; Omiyi, D.; Chukwu, U.; Young, L.H. Protein kinase C-ζ inhibition exerts cardioprotective effects in ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol.?2005, 289, H898–H907.
[134]  Hahn, H.S.; Yussman, M.G.; Toyokawa, T.; Marreez, Y.; Barrett, T.J.; Hilty, K.C.; Osinska, H.; Robbins, J.; Dorn, G.W., II. Ischemic protection and myofibrillar cardiomyopathy: Dose-dependent effects of in vivo delta-PKC inhibition. Circ. Res.?2002, 91, 741–748, doi:10.1161/01.RES.0000037091.64492.69. 12386152
[135]  Fantinelli, J.C.; Mosca, S.M. Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Mol. Cell. Biochem.?2007, 296, 45–51.
[136]  Cave, A.C.; Apstein, C.S. Polymyxin B, a protein kinase C inhibitor, abolishes preconditioning-induced protection against contractile dysfunction in the isolated blood perfused rat hear. J. Mol. Cell. Cardiol.?1996, 28, 977–987.
[137]  Liu, Y.; Tsuchida, A.; Cohen, M.V.; Downey, J.M. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J. Mol. Cell. Cardiol.?1995, 27, 883–892.
[138]  Mochly-Rosen, D.; Wu, G.; Hahn, H.; Osinska, H.; Liron, T.; Lorenz, J.N.; Yatani, A.; Robbins, J.; Dorn, G.W., II. Cardiotrophic effects of protein kinase C epsilon: Analysis by in vivo modulation of PKCepsilon translocation. Circ. Res.?2000, 86, 1173–1179.
[139]  Ping, P.; Takano, H.; Zhang, J.; Tang, X.L.; Qiu, Y.; Li, R.C.; Banerjee, S.; Dawn, B.; Balafonova, Z.; Bolli, R. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: A signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ. Res.?1999, 84, 587–604.
[140]  Inagaki, K.; Hahn, H.S.; Dorn, G.W., 2nd; Mochly-Rosen, D. Additive protection of the ischemic heart ex vivo by combined treatment with δ-protein kinase C inhibitor and epsilon-protein kinase C activator. Circulation?2003, 108, 869–875, doi:10.1161/01.CIR.0000081943.93653.73. 12860903
[141]  Teng, J.C.; Kay, H.; Chen, Q.; Adams, J.S.; Grilli, C.; Guglielmello, G.; Zambrano, C.; Krass, S.; Bell, A.; Young, L.H. Mechanisms related to the cardioprotective effects of protein kinase C epsilon (PKC epsilon) peptide activator or inhibitor in rat ischemia/reperfusion injury. Naunyn Schmiedebergs Arch. Pharmacol.?2008, 378, 1–15.
[142]  Yu, Q.; Nguyen, T.; Ogbi, M.; Caldwell, R.W.; Johnson, J.A. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: Exacerbation of COI subunit loss by PKC-epsilon inhibition. Am. J. Physiol. Heart Circ. Physiol.?2008, 294, H2637–2645.
[143]  Wang, G.Y.; Zhou, J.J.; Shan, J.; Wong, T.M. Protein kinase C-epsilon is a trigger of delayed cardioprotection against myocardial ischemia of κ-opioid receptor stimulation in rat ventricular myocytes. J. Pharmacol. Exp. Ther.?2001, 299, 603–610.
[144]  Malhotra, A.; Kang, B.P.; Hashmi, S.; Meggs, L.G. PKC-epsilon inhibits the hyperglycemia-induced apoptosis signal in adult rat ventricular myocytes. Mol. Cell. Biochem.?2005, 268, 169–173.
[145]  Malhotra, A.; Begley, R.; Kang, B.P.; Rana, I.; Liu, J.; Yang, G.; Mochly-Rosen, D.; Meggs, L.G. PKC-ε-dependent survival signals in diabetic hearts. Am. J. Physiol. Heart Circ. Physiol.?2005, 289, H1343–H1350.
[146]  House, S.L.; Melhorn, S.J.; Newman, G.; Doetschman, T.; Schultz Jel, J. The protein kinase C pathway mediates cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2. Am. J. Physiol. Heart Circ. Physiol.?2007, 293, H354–H365.
[147]  Das, A.; Ockaili, R.; Salloum, F.; Kukreja, R.C. Protein kinase C plays an essential role in sildenafil-induced cardioprotection in rabbits. Am. J. Physiol. Heart Circ. Physiol.?2004, 286, H1455–H1460.
[148]  Chen, L.; Hahn, H.; Wu, G.; Chen, C.H.; Liron, T.; Schechtman, D.; Cavallaro, G.; Banci, L.; Guo, Y.; Bolli, R.; Dorn, G.W., II.; Mochly-Rosen, D. Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. Proc. Natl. Acad. Sci. USA.?2001, 98, 11114–11119.
[149]  Carpenter, C.L.; Duckworth, B.C.; Auger, K.R.; Cohen, B.; Schaffhausen, B.S.; Cantley, L.C. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem.?1990, 265, 19704–19711.
[150]  Escobedo, J.A.; Navankasattusas, S.; Kavanaugh, W.M.; Milfay, D.; Fried, V.A.; Williams, L.T. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell?1991, 65, 75–82.
[151]  Otsu, M.; Hiles, I.; Gout, I.; Fry, M.J.; Ruiz-Larrea, F.; Panayotou, G.; Thompson, A.; Dhand, R.; Hsuan, J.; Totty, N.; et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell?1991, 65, 91–104, doi:10.1016/0092-8674(91)90411-Q. 1707345
[152]  Skolnik, E.Y.; Margolis, B.; Mohammadi, M.; Lowenstein, E.; Fischer, R.; Drepps, A.; Ullrich, A.; Schlessinger, J. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell?1991, 65, 83–90.
[153]  Geering, B.; Cutillas, P.R.; Nock, G.; Gharbi, S.I.; Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci. USA?2007, 104, 7809–7814.
[154]  Walker, E.H.; Perisic, O.; Ried, C.; Stephens, L.; Williams, R.L. Structural insights into phosphoinositide 3-kinase catalysis and signaling. Nature?1999, 402, 313–320.
[155]  Williams, R.; Berndt, A.; Miller, S.; Hon, W.C.; Zhang, X. Form and flexibility in phosphoinositide 3-kinases. Biochem. Soc. Trans.?2009, 37, 615–626.
[156]  Knight, Z.A.; Gonzalez, B.; Feldman, M.E.; Zunder, E.R.; Goldenberg, D.D.; Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; Balla, T.; Weiss, W.A.; Williams, R.L.; Shokat, K.M. A pharmacological map of the PI3-K family defines a role for p110-α in insulin signaling. Cell?2006, 125, 733–747.
[157]  Crackower, M.A.; Oudit, G.Y.; Kozieradzki, I.; Sarao, R.; Sun, H.; Sasaki, T.; Hirsch, E.; Suzuki, A.; Shioi, T.; Irie-Sasaki, J.; Sah, R.; Cheng, H.Y.; Rybin, V.O.; Lembo, G.; Fratta, L.; Oliveira-dos-Santos, A.J.; Benovic, J.L.; Kahn, C.R.; Izumo, S.; Steinberg, S.F.; Wymann, M.P.; Backx, P.H.; Penninger, J.M. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell?2002, 110, 737–749.
[158]  Rose, R.A.; Kabir, M.G.; Backx, P.H. Altered heart rate and sinoatrial node function in mice lacking the cAMP regulator phosphoinositide 3-kinase-γ. Circ. Res.?2007, 101, 1274–1282.
[159]  Ravingerova, T.; Matejikova, J.; Neckar, J.; Andelova, E.; Kolar, F. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart. Mol. Cell. Biochem.?2007, 297, 111–120.
[160]  Siragusa, M.; Katare, R.; Meloni, M.; Damilano, F.; Hirsch, E.; Emanueli, C.; Madeddu, P. Involvement of phosphoinositide 3-kinase γ in angiogenesis and healing of experimental myocardial infarction in mice. Circ. Res.?2010, 106, 757–768.
[161]  Perrino, C.; Rockman, H.A.; Chiariello, M. Targeted inhibition of phosphoinositide 3-kinase activity as a novel strategy to normalize β-adrenergic receptor function in heart failure. Vascul. Pharmacol.?2006, 45, 77–85.
[162]  Perrino, C.; Naga Prasad, S.V.; Patel, M.; Wolf, M.J.; Rockman, H.A. Targeted inhibition of β-adrenergic receptor kinase-1-associated phosphoinositide-3 kinase activity preserves β-adrenergic receptor signaling and prolongs survival in heart failure induced by calsequestrin overexpression. J. Am. Coll. Cardiol.?2005, 45, 1862–1870.
[163]  Perrino, C.; Naga Prasad, S.V.; Schroder, J.N.; Hata, J.A.; Milano, C.; Rockman, H.A. Restoration of β-adrenergic receptor signaling and contractile function in heart failure by disruption of the β-ARK1/phosphoinositide 3-kinase complex. Circulation?2005, 111, 2579–2587.
[164]  Nienaber, J.J.; Tachibana, H.; Naga Prasad, S.V.; Esposito, G.; Wu, D.; Mao, L.; Rockman, H.A. Inhibition of receptor-localized PI3K preserves cardiac β-adrenergic receptor function and ameliorates pressure overload heart failure. J. Clin. Invest.?2003, 112, 1067–1079.
[165]  Awad, A.E.; Kandalam, V.; Chakrabarti, S.; Wang, X.; Penninger, J.M.; Davidge, S.T.; Oudit, G.Y.; Kassiri, Z. Tumor necrosis factor induces matrix metalloproteinases in cardiomyocytes and cardiofibroblasts differentially via superoxide production in a PI3K-gamma-dependent manner. Am. J. Physiol. Cell. Physiol.?2010, 298, C679–C692.
[166]  Perrino, C.; Naga Prasad, S.V.; Mao, L.; Noma, T.; Yan, Z.; Kim, H.S.; Smithies, O.; Rockman, H.A. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Invest.?2006, 116, 1547–1560.
[167]  Luo, J.; McMullen, J.R.; Sobkiw, C.L.; Zhang, L.; Dorfman, A.L.; Sherwood, M.C.; Logsdon, M.N.; Horner, J.W.; DePinho, R.A.; Izumo, S.; Cantley, L.C. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol. Cell. Biol.?2005, 25, 9491–9502.
[168]  Deschamps, A.M.; Murphy, E. Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am. J. Physiol. Heart Circ. Physiol.?2009, 297, H1806–H1813. 19717735
[169]  Chaudhary, K.R.; Batchu, S.N.; Das, D.; Suresh, M.R.; Falck, J.R.; Graves, J.P.; Zeldin, D.C.; Seubert, J.M. Role of B-type natriuretic peptide in epoxyeicosatrienoic acid-mediated improved post-ischaemic recovery of heart contractile function. Cardiovasc. Res.?2009, 83, 362–370.
[170]  Okumura, H.; Nagaya, N.; Itoh, T.; Okano, I.; Hino, J.; Mori, K.; Tsukamoto, Y.; Ishibashi-Ueda, H.; Miwa, S.; Tambara, K.; Toyokuni, S.; Yutani, C.; Kangawa, K. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation?2004, 109, 242–248.
[171]  Pretorius, L.; Du, X.J.; Woodcock, E.A.; Kiriazis, H.; Lin, R.C.; Marasco, S.; Medcalf, R.L.; Ming, Z.; Head, G.A.; Tan, J.W.; Cemerlang, N.; Sadoshima, J.; Shioi, T.; Izumo, S.; Lukoshkova, E.V.; Dart, A.M.; Jennings, G.L.; McMullen, J.R. Reduced phosphoinositide 3-kinase (p110-α) activation increases the susceptibility to atrial fibrillation. Am. J. Pathol.?2009, 175, 998–1009.
[172]  Lu, Z.; Jiang, Y.P.; Wang, W.; Xu, X.H.; Mathias, R.T.; Entcheva, E.; Ballou, L.M.; Cohen, I.S.; Lin, R.Z. Loss of cardiac phosphoinositide 3-kinase p110 α results in contractile dysfunction. Circulation?2009, 120, 318–325.
[173]  McMullen, J.R.; Amirahmadi, F.; Woodcock, E.A.; Schinke-Braun, M.; Bouwman, R.D.; Hewitt, K.A.; Mollica, J.P.; Zhang, L.; Zhang, Y.; Shioi, T.; Buerger, A.; Izumo, S.; Jay, P.Y.; Jennings, G.L. Protective effects of exercise and phosphoinositide 3-kinase(p110α) signaling in dilated and hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. USA?2007, 104, 612–617.
[174]  McMullen, J.R.; Shioi, T.; Zhang, L.; Tarnavski, O.; Sherwood, M.C.; Kang, P.M.; Izumo, S. Phosphoinositide 3-kinase(p110-α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl. Acad. Sci. USA?2003, 100, 12355–12360.
[175]  Takenaka, H.; Horiba, M.; Ishiguro, H.; Sumida, A.; Hojo, M.; Usui, A.; Akita, T.; Sakuma, S.; Ueda, Y.; Kodama, I.; Kadomatsu, K. Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.?2009, 296, H462–469.
[176]  Mao, W.; Iwai, C.; Liu, J.; Sheu, S.S.; Fu, M.; Liang, C.S. Darbepoetin alfa exerts a cardioprotective effect in autoimmune cardiomyopathy via reduction of ER stress and activation of the PI3K/Akt and STAT3 pathways. J. Mol. Cell. Cardiol.?2008, 45, 250–260.
[177]  Curcio, A.; Noma, T.; Naga Prasad, S.V.; Wolf, M.J.; Lemaire, A.; Perrino, C.; Mao, L.; Rockman, H.A. Competitive displacement of phosphoinositide 3-kinase from β-adrenergic receptor kinase-1 improves postinfarction adverse myocardial remodeling. Am. J. Physiol. Heart Circ. Physiol.?2006, 291, H1754–H1760.
[178]  Wang, W.; Peng, Y.; Wang, Y.; Zhao, X.; Yuan, Z. The anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage through the Pi3k/Akt pathway. Clin. Exp. Pharmacol. Physiol.?2009.
[179]  Wang, M.J.; Wang, Y.; Weil, B.; Abarbanell, A.; Herrmann, J.; Tan, J.N.; Kelly, M.; Meldrum, D.R. Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am. J. Physiol. Regul. Integr. Compar. Physiol.?2009, 296, R972–R978.
[180]  Bulhak, A.A.; Jung, C.; Ostenson, C.G.; Lundberg, J.O.; Sjoquist, P.O.; Pernow, J. PPAR-α activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: Involvement of the PI3-Kinase/Akt and NO pathway. Am. J. Physiol. Heart Circ. Physiol.?2009, 296, H719–727.
[181]  Tsang, A.; Hausenloy, D.J.; Mocanu, M.M.; Carr, R.D.; Yellon, D.M. Preconditioning the diabetic heart: The importance of Akt phosphorylation. Diabetes?2005, 54, 2360–2364.
[182]  Baines, C.P.; Wang, L.; Cohen, M.V.; Downey, J.M. Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Res. Cardiol.?1999, 94, 188–198.
[183]  Kim, K.H.; Oudit, G.Y.; Backx, P.H. Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway. J. Pharmacol. Exp. Ther.?2008, 324, 160–169.
[184]  Hu, Y.; Chen, X.; Pan, T.T.; Neo, K.L.; Lee, S.W.; Khin, E.S.; Moore, P.K.; Bian, J.S. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch.?2008, 455, 607–616.
[185]  Nagoshi, T.; Matsui, T.; Aoyama, T.; Leri, A.; Anversa, P.; Li, L.; Ogawa, W.; del Monte, F.; Gwathmey, J.K.; Grazette, L.; Hemmings, B.A.; Kass, D.A.; Champion, H.C.; Rosenzweig, A. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J. Clin. Invest.?2005, 115, 2128–2138.
[186]  Chiari, P.C.; Bienengraeber, M.W.; Pagel, P.S.; Krolikowski, J.G.; Kersten, J.R.; Warltier, D.C. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: Evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology?2005, 102, 102–109.
[187]  Tsang, A.; Hausenloy, D.J.; Mocanu, M.M.; Yellon, D.M. Postconditioning: A form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ. Res.?2004, 95, 230–232.
[188]  Tang, J.; Wang, J.; Kong, X.; Yang, J.; Guo, L.; Zheng, F.; Zhang, L.; Huang, Y.; Wan, Y. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp. Cell Res.?2009, 315, 3521–3531.
[189]  Chan, T.O.; Rittenhouse, S.E.; Tsichlis, P.N. AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem.?1999, 68, 965–1014.
[190]  DeBosch, B.; Treskov, I.; Lupu, T.S.; Weinheimer, C.; Kovacs, A.; Courtois, M.; Muslin, A.J. Akt1 is required for physiological cardiac growth. Circulation?2006, 113, 2097–2104, doi:10.1161/CIRCULATIONAHA.105.595231. 16636172
[191]  DeBosch, B.; Sambandam, N.; Weinheimer, C.; Courtois, M.; Muslin, A.J. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J. Biol. Chem.?2006, 281, 32841–32851.
[192]  Schindler, J.F.; Monahan, J.B.; Smith, W.G. p38 pathway kinases as anti-inflammatory drug targets. J. Dent. Res.?2007, 86, 800–811.
[193]  Xu, Y.J.; Saini, H.K.; Zhang, M.; Elimban, V.; Dhalla, N.S. MAPK activation and apoptotic alterations in hearts subjected to calcium paradox are attenuated by taurine. Cardiovasc. Res.?2006, 72, 163–174.
[194]  Wang, Y.; Huang, S.; Sah, V.P.; Ross, J., Jr.; Brown, J.H.; Han, J.; Chien, K.R. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem.?1998, 273, 2161–2168.
[195]  See, F.; Thomas, W.; Way, K.; Tzanidis, A.; Kompa, A.; Lewis, D.; Itescu, S.; Krum, H. p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J. Am. Coll. Cardiol.?2004, 44, 1679–1689.
[196]  Barancik, M.; Htun, P.; Strohm, C.; Kilian, S.; Schaper, W. Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J. Cardiovasc. Pharmacol.?2000, 35, 474–483.
[197]  Pombo, C.M.; Bonventre, J.V.; Avruch, J.; Woodgett, J.R.; Kyriakis, J.M.; Force, T. The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J. Biol. Chem.?1994, 269, 26546–26551.
[198]  Nagarkatti, D.S.; Sha'afi, R.I. Role of p38 MAP kinase in myocardial stress. J. Mol. Cell. Cardiol.?1998, 30, 1651–1664.
[199]  Saurin, A.T.; Martin, J.L.; Heads, R.J.; Foley, C.; Mockridge, J.W.; Wright, M.J.; Wang, Y.; Marber, M.S. The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes. FASEB J.?2000, 14, 2237–2246.
[200]  Ma, X.L.; Kumar, S.; Gao, F.; Louden, C.S.; Lopez, B.L.; Christopher, T.A.; Wang, C.; Lee, J.C.; Feuerstein, G.Z.; Yue, T.L. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation?1999, 99, 1685–1691.
[201]  Mackay, K.; Mochly-Rosen, D. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J. Biol. Chem.?1999, 274, 6272–6279.
[202]  Martin, J.L.; Avkiran, M.; Quinlan, R.A.; Cohen, P.; Marber, M.S. Antiischemic effects of SB203580 are mediated through the inhibition of p38-α mitogen-activated protein kinase: Evidence from ectopic expression of an inhibition-resistant kinase. Circ. Res.?2001, 89, 750–752.
[203]  Otsu, K.; Yamashita, N.; Nishida, K.; Hirotani, S.; Yamaguchi, O.; Watanabe, T.; Hikoso, S.; Higuchi, Y.; Matsumura, Y.; Maruyama, M.; Sudo, T.; Osada, H.; Hori, M. Disruption of a single copy of the p38-α MAP kinase gene leads to cardioprotection against ischemia-reperfusion. Biochem. Biophys. Res. Commun.?2003, 302, 56–60.
[204]  Willette, R.N.; Eybye, M.E.; Olzinski, A.R.; Behm, D.J.; Aiyar, N.; Maniscalco, K.; Bentley, R.G.; Coatney, R.W.; Zhao, S.; Westfall, T.D.; Doe, C.P. Differential effects of p38 mitogen-activated protein kinase and cyclooxygenase 2 inhibitors in a model of cardiovascular disease. J. Pharmacol. Exp. Ther.?2009, 330, 964–970.
[205]  Shi, J.; Guan, J.; Jiang, B.; Brenner, D.A.; Del Monte, F.; Ward, J.E.; Connors, L.H.; Sawyer, D.B.; Semigran, M.J.; Macgillivray, T.E.; Seldin, D.C.; Falk, R.; Liao, R. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38-α MAPK pathway. Proc. Natl. Acad. Sci. USA?2010, 107, 4188–4193.
[206]  Yin, H.; Zhang, J.; Lin, H.; Wang, R.; Qiao, Y.; Wang, B.; Liu, F. p38 mitogen-activated protein kinase inhibition decreases TNF-α secretion and protects against left ventricular remodeling in rats with myocardial ischemia. Inflammation?2008, 31, 65–73.
[207]  Liu, Z.; Cao, W. p38 mitogen-activated protein kinase: A critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus. Endocr. Metab. Immune Disord. Drug Targets?2009, 9, 38–46.
[208]  Wenzel, S.; Soltanpour, G.; Schluter, K.D. No correlation between the p38 MAPK pathway and the contractile dysfunction in diabetic cardiomyocytes: Hyperglycaemia-induced signaling and contractile function. Pflugers Arch.?2005, 451, 328–337.
[209]  Ogut, O.; Brozovich, F.V. The potential role of MLC phosphatase and MAPK signaling in the pathogenesis of vascular dysfunction in heart failure. J. Cell. Mol. Med.?2008, 12, 2158–2164.
[210]  Fan, L.; Sawbridge, D.; George, V.; Teng, L.; Bailey, A.; Kitchen, I.; Li, J.M. Chronic cocaine-induced cardiac oxidative stress and mitogen-activated protein kinase activation: The role of Nox2 oxidase. J. Pharmacol. Exp. Ther.?2009, 328, 99–106.
[211]  Muslin, A.J. MAPK signaling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clin. Sci.?2008, 115, 203–218.
[212]  Bao, W.; Behm, D.J.; Nerurkar, S.S.; Ao, Z.; Bentley, R.; Mirabile, R.C.; Johns, D.G.; Woods, T.N.; Doe, C.P.; Coatney, R.W.; Ohlstein, J.F.; Douglas, S.A.; Willette, R.N.; Yue, T.L. Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production. J. Cardiovasc. Pharmacol.?2007, 49, 362–368, doi:10.1097/FJC.0b013e318046f34a. 17577100
[213]  Sato, H.; Tanaka, T.; Kasai, K.; Kita, T.; Tanaka, N. Role of p38 mitogen-activated protein kinase on cardiac dysfunction after hemorrhagic shock in rats. Shock?2007, 28, 291–299.
[214]  Westermann, D.; Rutschow, S.; Van Linthout, S.; Linderer, A.; Bucker-Gartner, C.; Sobirey, M.; Riad, A.; Pauschinger, M.; Schultheiss, H.P.; Tschope, C. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia?2006, 49, 2507–2513.
[215]  Kyoi, S.; Otani, H.; Matsuhisa, S.; Akita, Y.; Tatsumi, K.; Enoki, C.; Fujiwara, H.; Imamura, H.; Kamihata, H.; Iwasaka, T. Opposing effect of p38 MAP kinase and JNK inhibitors on the development of heart failure in the cardiomyopathic hamster. Cardiovasc. Res.?2006, 69, 888–898.
[216]  Li, Z.; Ma, J.Y.; Kerr, I.; Chakravarty, S.; Dugar, S.; Schreiner, G.; Protter, A.A. Selective inhibition of p38-alpha MAPK improves cardiac function and reduces myocardial apoptosis in rat model of myocardial injury. Am. J. Physiol. Heart Circ. Physiol.?2006, 291, H1972–H1977.
[217]  Wang, M.; Sankula, R.; Tsai, B.M.; Meldrum, K.K.; Turrentine, M.; March, K.L.; Brown, J.W.; Dinarello, C.A.; Meldrum, D.R. P38 MAPK mediates myocardial proinflammatory cytokine production and endotoxin-induced contractile suppression. Shock?2004, 21, 170–174.
[218]  Peng, T.; Lu, X.; Lei, M.; Moe, G.W.; Feng, Q. Inhibition of p38 MAPK decreases myocardial TNF-alpha expression and improves myocardial function and survival in endotoxemia. Cardiovasc. Res.?2003, 59, 893–900.
[219]  Cain, B.S.; Meldrum, D.R.; Meng, X.; Dinarello, C.A.; Shames, B.D.; Banerjee, A.; Harken, A.H. p38 MAPK inhibition decreases TNF-α production and enhances postischemic human myocardial function. J. Surg. Res.?1999, 83, 7–12.
[220]  Li, G.; Ali, I.S.; Currie, R.W. Insulin-induced myocardial protection in isolated ischemic rat hearts requires p38 MAPK phosphorylation of Hsp27. Am. J. Physiol. Heart Circ. Physiol.?2008, 294, H74–H87.
[221]  Yoshimura, Y.; Kristo, G.; Keith, B.J.; Jahania, S.A.; Mentzer, R.M., Jr.; Lasley, R.D. The p38 MAPK inhibitor SB203580 blocks adenosine A(1) receptor-induced attenuation of in vivo myocardial stunning. Cardiovasc. Drugs Ther.?2004, 18, 433–440, doi:10.1007/s10557-004-6220-4. 15770430
[222]  Kristo, G.; Yoshimura, Y.; Keith, B.J.; Stevens, R.M.; Jahania, S.A.; Mentzer, R.M., Jr.; Lasley, R.D. Adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Am. J. Physiol. Heart Circ. Physiol.?2004, 287, H2746–H2753. 15271662
[223]  Cameron, S.J.; Itoh, S.; Baines, C.P.; Zhang, C.; Ohta, S.; Che, W.; Glassman, M.; Lee, J.D.; Yan, C.; Yang, J.; Abe, J. Activation of big MAP kinase 1 (BMK1/ERK5) inhibits cardiac injury after myocardial ischemia and reperfusion. FEBS Lett.?2004, 566, 255–260.
[224]  Yasaka, A.; Hayashida, W. Alterations of load-induced p38 MAP kinase activation in failing rat hearts. Biochem. Biophys. Res. Commun.?2001, 285, 503–507.
[225]  Braz, J.C.; Bueno, O.F.; Liang, Q.; Wilkins, B.J.; Dai, Y.S.; Parsons, S.; Braunwart, J.; Glascock, B.J.; Klevitsky, R.; Kimball, T.F.; Hewett, T.E.; Molkentin, J.D. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J. Clin. Invest.?2003, 111, 1475–1486.
[226]  Liu, J.; Sadoshima, J.; Zhai, P.; Hong, C.; Yang, G.; Chen, W.; Yan, L.; Wang, Y.; Vatner, S.F.; Vatner, D.E. Pressure overload induces greater hypertrophy and mortality in female mice with p38-α MAPK inhibition. J. Mol. Cell. Cardiol.?2006, 41, 680–688.
[227]  Mocanu, M.M.; Baxter, G.F.; Yue, Y.; Critz, S.D.; Yellon, D.M. The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic. Res. Cardiol.?2000, 95, 472–478. 11192368
[228]  Iliodromitis, E.K.; Aggeli, I.K.; Gaitanaki, C.; Tsiafoutis, I.; Zoga, A.; Beis, I.; Kremastinos, D.T. p38-MAPK is involved in restoration of the lost protection of preconditioning by nicorandil in vivo. Eur. J. Pharmacol.?2008, 579, 289–297, doi:10.1016/j.ejphar.2007.10.026. 18031732
[229]  Bell, J.R.; Eaton, P.; Shattock, M.J. Role of p38-mitogen-activated protein kinase in ischaemic preconditioning in rat heart. Clin. Exp. Pharmacol. Physiol.?2008, 35, 126–134.
[230]  Jaswal, J.S.; Gandhi, M.; Finegan, B.A.; Dyck, J.R.; Clanachan, A.S. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am. J. Physiol. Heart Circ. Physiol.?2007, 293, H1107–H1114.
[231]  Wu, X.; Liu, X.; Zhu, X.; Tang, C. Hypoxic preconditioning induces delayed cardioprotection through p38 MAPK-mediated calreticulin upregulation. Shock?2007, 27, 572–577.
[232]  Ruusalepp, A.; Czibik, G.; Flatebo, T.; Vaage, J.; Valen, G. Myocardial protection evoked by hyperoxic exposure involves signaling through nitric oxide and mitogen activated protein kinases. Basic Res. Cardiol.?2007, 102, 318–326.
[233]  House, S.L.; Branch, K.; Newman, G.; Doetschman, T.; Schultz Jel, J. Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. Am. J. Physiol. Heart Circ. Physiol.?2005, 289, H2167–H2175.
[234]  Liu, Y.H.; Wang, D.; Rhaleb, N.E.; Yang, X.P.; Xu, J.; Sankey, S.S.; Rudolph, A.E.; Carretero, O.A. Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction. J. Card. Fail.?2005, 11, 74–81.
[235]  Weinbrenner, C.; Liu, G.S.; Cohen, M.V.; Downey, J.M. Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J. Mol. Cell. Cardiol.?1997, 29, 2383–2391.
[236]  Bogoyevitch, M.A.; Sugden, P.H. The role of protein kinases in adaptational growth of the heart. Int. J. Biochem. Cell Biol.?1996, 28, 1–12.
[237]  Malhotra, A.; Kang, B.P.; Opawumi, D.; Belizaire, W.; Meggs, L.G. Molecular biology of protein kinase C signaling in cardiac myocytes. Mol. Cell. Biochem.?2001, 225, 97–107.
[238]  Djordjevic, S.; Driscoll, P.C. Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Trends Biochem. Sci.?2002, 27, 426–432.
[239]  Krishna, M.; Narang, H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell. Mol. Life Sci.?2008, 65, 3525–3544.
[240]  Martindale, J.J.; Wall, J.A.; Martinez-Longoria, D.M.; Aryal, P.; Rockman, H.A.; Guo, Y.; Bolli, R.; Glembotski, C.C. Overexpression of mitogen-activated protein kinase kinase 6 in the heart improves functional recovery from ischemia in vitro and protects against myocardial infarction in vivo. J. Biol. Chem.?2005, 280, 669–676. 15492008
[241]  Bassi, R.; Heads, R.; Marber, M.S.; Clark, J.E. Targeting p38-MAPK in the ischaemic heart: Kill or cure? Curr. Opin. Pharmacol.?2008, 8, 141–146, doi:10.1016/j.coph.2008.01.002. 18289939
[242]  Zhang, W.; Elimban, V.; Xu, Y.J.; Zhang, M.; Nijjar, M.S.; Dhalla, N.S. Alterations of cardiac ERK1/2 expression and activity due to volume overload were attenuated by the blockade of RAS. J. Cardiovasc. Pharmacol. Ther?2010, 15, 84–92.
[243]  Sharma, V.; Abraham, T.; So, A.; Allard, M.F.; McNeill, J.H. Functional effects of protein kinases and peroxynitrite on cardiac carnitine palmitoyltransferase-1 in isolated mitochondria. Mol. Cell. Biochem.?2010, 337, 223–237.
[244]  Fryer, R.M.; Wang, Y.; Hsu, A.K.; Nagase, H.; Gross, G.J. Dependence of β1-opioid receptor-induced cardioprotection on a tyrosine kinase-dependent but not a Src-dependent pathway. J. Pharmacol. Exp. Ther.?2001, 299, 477–482.
[245]  Fryer, R.M.; Schultz, J.E.; Hsu, A.K.; Gross, G.J. Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts. Am. J. Physiol. Cell. Physiol.?1999, 276, H1229–H1235.
[246]  Okubo, S.; Tanabe, Y.; Takeda, K.; Kitayama, M.; Kanemitsu, S.; Kukreja, R.C.; Takekoshi, N. Pretreatment with tyrosine kinase inhibitor attenuates the reduction of apoptosis 24 h after ischemic preconditioning. Jpn. J. Physiol.?2004, 54, 143–151.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133