全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cell-Penetrating Fragments of the Cdk5 Regulatory Subunit Are Protective in Models of Neurodegeneration

DOI: 10.3390/ph3041232

Keywords: Cdk5, Tat-technique, neurodegenerative diseases

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cdk5 is essential for neuronal differentiation processes in the brain. Activation of Cdk5 requires the association with the mostly neuron-specific p35 or p39. Overactivation of CDK5 by cleavage of p35 into p25 is thought to be involved in neurodegenerative processes. Here, we have tested an approach to inhibit pathological Cdk5 activation with a Tat-linked dominant-negative fragment of p25. It reduced cell death induced by staurosporine and showed a tendency to alleviate manganese-induced cell death, while it did not protect against 6-OHDA toxicity. Our results suggest that the Tat technique is a suitable tool to inhibit dysregulated CDK5.

References

[1]  Dhavan, R.; Tsai, L.H. A decade of Cdk5. Nat. Rev. Mol. Cell. Biol.?2001, 2749–2759.
[2]  Lee, M.S.; Kwon, Y.T.; Mingwei, L.; Peng, J.; Friedlander, R.M.; Tsai, H.T. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature?2000, 18, 360–364.
[3]  Patrick, G.N.; Zukerberg, L.; Nikolic, M.; de la Monte, S.; Dikkes, P.; Tsai, L.H. Conversion of p35 to p25 de-regulates cdk5 activity and promotes neurodegeneration. Nature?1999, 9615–9622.
[4]  Nguyen, M.D.; Lariviere, R.C.; Juien, J.P. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron?2001, 30, 135–147, doi:10.1016/S0896-6273(01)00268-9. 11343650
[5]  Tseng, H.C.; Zhou, Y.; Shen, Y.; Tsai, L.H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett.?2002, 523, 58–62. 12123804
[6]  Cruz, J.C.; Kim, D.; Moy, L.Y.; Dobbin, M.M.; Sun, X.; Bronson, R.T.; Tsai, L.H. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J. Neurosci.?2006, 26, 10536–10541. 17035538
[7]  Ahlijanian, M.K.; Barrezueta, N.X.; Williams, R.D.; Jakowski, A.; Kowsz, K.P.; McCarthy, S.; Coskran, T.; Carlo, A.; Seymour, P.A.; Burkhardt, J.E.; Nelson, R.B.; McNeish, J.D. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc. Nat. Acad. Sci. USA?2000, 97, 2910–2915, doi:10.1073/pnas.040577797. 10706614
[8]  Hung, K.S.; Hwang, S.L.; Liang, C.L.; Chen, Y.J.; Lee, T.H.; Liu, J.K.; Howng, S.L.; Wang, C.H. Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats. J. Neuropathol. Exp. Neuro.?2005, 64, 15–26.
[9]  Smith, P.D.; Mount, M.P.; Shree, R.; Callaghan, S.; Slack, R.S.; Ansiman, H.; Vincent, I.; Wang, X.; Mao, Z.; Park, D.S. Calpain regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci.?2006, 26, 440–447. 16407541
[10]  Saito, T.; Konno, T.; Hosokawa, T.; Asada, A.; Ishiguro, K.; Hisanaga, S. p25/cyclin-dependent kinase 5 promotes the progression of cell death in nucleus of endoplasmic reticulum-stressed neurons. J. Neurochem.?2007, 102, 133–140, doi:10.1111/j.1471-4159.2007.04540.x. 17506859
[11]  Dietz, G.P.; B?hr, M. Synthesis of cell-penetrating peptides and their application in neurobiology. Methods Mol. Biol.?2007, 399, 181–198. 18309933
[12]  Dietz, G.P.; B?hr, M. Peptide-enhanced cellular internalization of proteins in neuroscience. Brain Res. Bull.?2005, 68, 103–114, doi:10.1016/j.brainresbull.2005.08.015. 16325010
[13]  Schwarze, S.R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science?1999, 285, 1569–1572. 10477521
[14]  Kilic, U.; Kilic, E.; Dietz, G.P.; B?hr, M. Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke?2003, 34, 1304–1310, doi:10.1161/01.STR.0000066869.45310.50. 12677018
[15]  Nagahara, H.; Vocero-Akbani, A.M.; Snyder, E.L.; Ho, A.; Latham, D.G.; Lissy, N.A.; Becker-Hapak, M.; Ezhevsky, S.A.; Dowdy, S.F. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med.?1998, 4, 1449–1452, doi:10.1038/4042. 9846587
[16]  Poon, R.Y.C.; Lew, J.; Hunter, T. Identification of Functional Domains in the Neuronal Cdk5 Activator Protein. J. Biol. Chem.?1997, 272, 5703–5708. 9038181
[17]  Nagel, F.; Dohm, C.P.; B?hr, M.; Wouters, F.S.; Dietz, G.P. Quantitative evaluation of chaperone activity by different preparations of a cell-penetrating Hsp70. J. Neurosci. Methods?2008, 171, 226–232, doi:10.1016/j.jneumeth.2008.03.008. 18455803
[18]  Zhang, B.F.; Peng, F.F.; Zhang, W.; Shen, H.; Wu, S.B.; Wu, D.C. Involvement of cyclin dependent kinase 5 and its activator p35 in staurosporine-induced apoptosis of cortical neurons. Acta Pharmacol. Sin.?2004, 25, 1105–1111. 15339383
[19]  Meuer, K.; Suppanz, I.E.; Lingor, P.; Planchamp, V.; G?ricke, B.; Fichtner, L.; Braus, G.H.; Dietz, G.P.; Jakobs, S.; B?hr, M.; Weishaupt, J.H. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ.?2007, 14, 651–661, doi:10.1038/sj.cdd.4402087. 17218957
[20]  Alvira, D.; Tajes, M.; Verdaguer, E.; Acu?a-Castroviejo, D.; Folch, J.; Camins, A.; Pallas, M. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease. J. Pineal. Res.?2006, 40, 251–258, doi:10.1111/j.1600-079X.2005.00308.x. 16499562
[21]  Calne, D.B.; Chu, N.S.; Luz, C.C.; Huang, C.S.; Olanow, W. Manganism and idiopathic parkinsonism: Similarities and differences. Neurology?1994, 44, 1583–1586, doi:10.1212/WNL.44.9.1583. 7936278
[22]  Cook, D.G.; Fahn, S.; Brait, K.A. Chronic manganese intoxication. Arch. Neurol.?1974, 30, 59–64, doi:10.1001/archneur.1974.00490310061010. 4202256
[23]  Higashi, Y.; Asanuma, M.; Miyazaki, I.; Hattori, N.; Mizuno, Y.; Ogawa, N. Parkin attenuates manganese-induced dopaminergic cell death. J. Neurochem.?2004, 89, 1490–1497, doi:10.1111/j.1471-4159.2004.02445.x. 15189352
[24]  Roth, J.A.; Singleton, S.; Feng, J.; Garrick, M.; Paradkar, P.N. Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J. Neurochem.?2010, 113, 454–464, doi:10.1111/j.1471-4159.2010.06607.x. 20089134
[25]  Li, Y.; Sun, L.; Cai, T.; Zhang, Y.; Lv, S.; Wang, Y.; Ye, L. Alpha-Synuclein overexpression during manganese-induced apoptosis in SH-SY5Y neuroblastoma cells. Brain Res. Bull.?2010, 81, 428–433, doi:10.1016/j.brainresbull.2009.11.007. 19932157
[26]  Hirata, Y. Manganese-induced apoptosis in PC12 cells. Neurotoxicol. Teratol.?2002, 24, 639–653, doi:10.1016/S0892-0362(02)00215-5. 12200195
[27]  Paoletti, P.; Vila, I.; Rife, M.; Lizcano, J.M.; Alberch, J.; Gines, S. Dopaminergic and Glutaminergic Signaling Crosstalk in Huntington’s Disease Neurodegeneration: The Role of p25/Cyclin-Dependent Kinase 5. Neurobiol. Dis.?2008, 28, 10090–10101.
[28]  Brouilet, E.P.; Shinobu, L.; McGarvey, U.; Hochberg, F.; Beal, M.F. Manganese injection into the Rat Striatum Produces Excitotoxic Lesions by Impairing Energy Metabolism. Exp. Neurol.?1993, 120, 89–94, doi:10.1006/exnr.1993.1042. 8477830
[29]  Kojima, H.; Abiru, Y.; Sakajiri, K.; Watabe, K.; Ohishi, N.; Takamori, M.; Hatanaka, H.; Yagi, K. Adenovirus-mediated transduction with human glial cell line-derived neurotrophic factor gene prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopamine depletion in striatum of mouse brain. Biochem. Biophys. Res. Commun.?1997, 238, 569–573, doi:10.1006/bbrc.1997.7183. 9299553
[30]  Dietz, G.P.; Valbuena, P.C.; Dietz, B.; Meuer, K.; Mueller, P.; Weishaupt, J.H.; B?hr, M. Application of a blood-brain-barrier-penetrating form of GDNF in a mouse model for Parkinson's disease. Brain Res.?2006, 1082, 61–66, doi:10.1016/j.brainres.2006.01.083. 16703672
[31]  Meikrantz, W.; Schlegel, R. Suppression of apoptosis by dominant negative mutants of cyclin- dependent protein kinases. J. Biol. Chem.?1996, 271, 10205–102059, doi:10.1074/jbc.271.17.10205. 8626584
[32]  Sandal, T.; Stapnes, C.; Kleivdal, H.; Hedin, L.; Doskeland, S.O. A novel, extraneuronal role for cyclin-dependent protein kinase 5 (CDK5): Modulation of cAMP-induced apoptosis in rat leukemia cells. J. Biol. Chem.?2002, 277, 20783–20793, doi:10.1074/jbc.M112248200. 11909854
[33]  Veeranna, Shetty, K.T.; Amin, N.; Grant, P.; Albers, R.W.; Pant, H.C. Inhibition of neuronal cyclin-dependent kinase-5 by staurosporine and purine analogs is independent of activation by Munc-18. Neurochem. Res.?1996, 21, 629–636, doi:10.1007/BF02527763. 8726973
[34]  Kesavapany, S.; Li, B.S.; Amin, N.; Zheng, Y.L.; Grant, P.; Pant, H.C. Neuronal cyclin-dependent kinase 5: Role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochemica et Biophysica Acta?2004, 1697, 143–153, doi:10.1016/j.bbapap.2003.11.020.
[35]  Kulich, S.M.; Horbinski, C.; Patel, M.; Chu, C.T. 6-Hydroxydopamine induces mitochondrial ERK activation. Free Radic. Biol. Med.?2007, 43, 372–383, doi:10.1016/j.freeradbiomed.2007.04.028. 17602953

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133