Lysostaphin is an antimicrobial agent belonging to a major class of antimicrobial peptides and proteins known as the bacteriocins. Bacteriocins are bacterial antimicrobial peptides which generally exhibit bactericidal activity against other bacteria. Bacteriocin production is a self-protection mechanism that helps the microorganisms to survive in their natural habitats. Bacteriocins are currently distributed into three main classes. Staphylococcins are bacteriocins produced by staphylococci, which are Gram-positive bacteria of medical and veterinary importance. Lysostaphin is the only class III staphylococcin described so far. It exhibits a high degree of antistaphylococcal bacteriolytic activity, being inactive against bacteria of all other genera. Infections caused by staphylococci continue to be a problem worldwide not only in healthcare environments but also in the community, requiring effective measures for controlling their spread. Since lysostaphin kills human and animal staphylococcal pathogens, it has potential biotechnological applications in the treatment of staphylococcal infections. In vitro and in vivo studies performed with lysostaphin have shown that this staphylococcin has potential to be used, solely or in combination with other antibacterial agents, to prevent or treat bacterial staphylococcal infectious diseases.
References
[1]
Heng, N.C.K.; Wescombe, P.A.; Burton, J.P.; Jack, R.W.; Tagg, J.R. The diversity of bacteriocins in Gram-positive bacteria. In Bacteriocins: Ecology and Evolution; Riley, M.A., Chavan, M.A., Eds.; Springer: New York, NY, USA, 2007; pp. 45–92.
[2]
Bierbaum, G.; Sahl, H.-G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol.?2009, 10, 2–18.
[3]
Nissen-Meyer, J.; Rogne, P.; Oppeg?rd, C.; Haugen, H.S.; Kristiansen, P.E. Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by Gram-positive bacteria. Curr. Pharm. Biotechnol.?2009, 10, 10–37.
[4]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol.?2005, 3, 777–788.
Euzéby, J.P. List of prokaryotic names with standing in nomenclature—Genus. Staphylococcus, Available online: http://www.bacterio.cict.fr , accessed April 2010.
[8]
Bannerman, T.L.; Peacock, S.J. Staphylococcus, Micrococcus, and other catalase-positive cocci. In Manual of Clinical Microbiology; Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L., Pfaller, M.A., Eds.; ASM Press: Washington D.C., USA, 2007; pp. 384–404.
Evans, H.L.; Saywer, R.G. Cycling chemotherapy: a promising approach to reducing the morbidity and mortality of nosocomial infections. Drugs Today?2003, 39, 733–738.
Schindler, C.A.; Schuhardt, V.T. Lysostaphin: A new bacteriolytic agent for the Staphylococcus. Proc. Natl. Acad. Sci. USA?1964, 51, 414–421, doi:10.1073/pnas.51.3.414.
[13]
Ehlert, K.; Schrodr, W.; Labischinski, H. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. J. Bacteriol.?1997, 179, 7573–7576.
[14]
Rohrer, S.; Ehlert, K.; Tschierske, M.; Labischinski, H.; Berger-B?chi, B. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc. Natl. Acad. Sci. USA.?1999, 96, 9351–9356.
Trayer, H.R.; Buckley III, C.E. Molecular properties of lysostaphin, a bacteriolytic agent specific for Staphylococcus aureus. J. Biol. Chem.?1970, 245, 4842–4846. 5456157
[20]
Heinrich, P.; Rosenstein, R.; Bohmer, M.; Sonner, P.; G?tz, F. The molecular organization of the lysostaphin gene and its sequences repeated in tandem. Mol. Gen. Genet.?1987, 209, 563–569.
[21]
Thumm, G.; G?tz, F. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol. Microbiol.?1997, 23, 1251–1265, doi:10.1046/j.1365-2958.1997.2911657.x. 9106216
[22]
Simmonds, R.S.; Simpson, W.J.; Tagg, J.R. Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene?1997, 189, 255–261, doi:10.1016/S0378-1119(96)00859-1. 9168135
[23]
Baba, T.; Schneewindt, O. Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. EMBO J.?1996, 15, 4789–4797. 8890152
[24]
Gründling, A.; Schneewind, O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J. Bacteriol.?2006, 188, 2463–2472, doi:10.1128/JB.188.7.2463-2472.2006. 16547033
[25]
Recsei, P.A.; Gruss, A.D.; Novick, R.P. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc. Natl. Acad. Sci. USA?1987, 84, 1127–1131, doi:10.1073/pnas.84.5.1127.
[26]
Larrimore, S.A.; Clark, S.B.; Robinson, J.M.; Heath, H.E.; Sloan, G.L. Coordinate production of three exoenzymes by Staphylococcus staphylolyticus. J. Gen. Microbiol.?1982, 128, 1529–1535. 6750034
Williamson, C.M.; Bramley, A.J.; Lax, A.J. Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system. Appl. Environ. Microbiol.?1994, 60, 771–776. 8161174
[30]
Mierau, I.; Leij, P.; van Swam, I.; Blommestein, B.; Floris, E.; Mond, J.; Smid, E.J. Industrial scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin. Microb. Cell Fact.?2005, 4, 15, doi:10.1186/1475-2859-4-15. 15921518
[31]
Mierau, I.; Olieman, C.; Mond, J.; Smid, E.J. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb. Cell Fact.?2005, 4, 16, doi:10.1186/1475-2859-4-16. 15921537
[32]
Sugai, M.; Fujiwara, T.; Akiyama, T.; Ohara, M.; Komatsuzawa, H.; Inoue, S.; Suginaka, H. Purification and molecular characterization of glycylglycine endopeptidase produced by Staphylococcus capitis. J. Bacteriol.?1997, 179, 1193–1202. 9023202
[33]
Sugai, M.; Fujiwara, T.; Ohta, K.; Komatsuzawa, H.; Ohara, M.; Suginaka, H. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J. Bacteriol.?1997, 179, 4311–4318. 9209049
[34]
King, B.F.; Biel, M.L.; Wilkinson, B.J. Facile penetration of the Staphylococcus aureus capsule by lysostaphin. Infect. Immun.?1980, 29, 892–896. 7429637
[35]
Schindler, C.A.; Schuhardt, V.T. Purification and properties of lysostaphin—A lytic agent for Staphylococcus aureus. Biochem. Biophys. Acta?1965, 97, 242–250.
[36]
Zygmunt, W.A.; Harrison, E.F.; Browder, H.P.; Tavormina, P.A. Comparative inhibition of methicillin-resistant strains of Staphylococcus aureus by lysostaphin and other antibiotics. Appl. Microbiol.?1968, 16, 1174–1178. 5187926
[37]
Zygmunt, W.A.; Browder, H.P.; Tavormina, P.A. Susceptibility of coagulase-negative staphylococci to lysostaphin ant other antibiotics. Appl. Microbiol.?1968, 16, 1168–1173.
[38]
Grüdling, A.; Schneewind, O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J. Bacteriol.?2006, 188, 2463–2472, doi:10.1128/JB.188.7.2463-2472.2006. 16547033
[39]
Schleifer, K.H.; Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev.?1972, 36, 407–477.
[40]
Schleifer, K.H.; Fisher, U. Description of a new species of the genus Staphylococcus: Staphylococcus carnosus. Int. J. Syst. Bacteriol.?1982, 32, 153–156, doi:10.1099/00207713-32-2-153.
[41]
Schneewindt, O.; Fowler, A.; Faull, K.F. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science?1995, 268, 103–106. 7701329
[42]
Francius, G.; Domenech, O.; Mingeot-Leclercq, M.P.; Dufrêne, Y.F. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J. Bacteriol.?2008, 190, 7904–7909, doi:10.1128/JB.01116-08. 18835985
[43]
Patron, R.L.; Climo, M.W.; Goldstein, B.P.; Archer, G.L. Lysostaphin treatment of experimental aortic valve endocarditis caused by a Staphylococcus aureus isolate with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother.?1999, 43, 1754–1755. 10390235
[44]
Fimland, G.; Blingsmo, R.; Sletten, K.; Jung, G.; Nes, I.F.; Nissen-Meyer, J. New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl. Environ. Microbiol.?1996, 62, 3313–3318.
[45]
Kusuma, C.M.; Kokai-Kun, J.F. Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrob. Agents Chemother.?2005, 49, 3256–3263. 16048934
[46]
DeHart, H.; Heath, H.; Heath, L.; LeBlanc, P.; Sloan, G. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. Appl. Environ. Microbiol.?1995, 61, 1475–1479. 7747966
[47]
Ehlert, K.; Tschierske, M.; Mori, C.; Sch?der, W.; Berger-B?chi, B. Site-specific serine incorporation by Lif and Epr into positions 3 and 5 of the staphylococcal peptidoglycan interpeptide bridge. J. Bacteriol.?2000, 182, 2635–2638, doi:10.1128/JB.182.9.2635-2638.2000. 10762270
[48]
Robinson, J.M.; Hardman, J.K.; Sloan, G.L. Relationship between lysostaphin endopeptidase production and cell wall composition of Staphylococcus aureus. J. Bacteriol.?1979, 137, 1158–1164. 438117
[49]
Klesius, P.H.; Schuhardt, V.Y. Use of lysostaphin in the isolation of highly polymerized deoxyribonucleic acid and in the taxonomy of aerobic Micrococcaceae. J. Bacteriol.?1968, 95, 739–743.
[50]
Geary, C.; Stevens, M. Rapide lysostaphin test to differentiate Staphylococcus and Micrococcus species. J. Clin. Microbiol.?1986, 23, 1044–1045. 3519667
[51]
Schaffner, W.; Melly, M.A.; Hash, J.H; Koenig, M.G. Lysostaphin: an enzymatic approach to staphylococcal disease. I. In vitro studies. Yale J. Biol. Med.?1967, 39, 215–229. 5182857
[52]
Walsh, S.; Shah, A; Mood, J. Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob. Agents Chemother?2002, 47, 554–558.
[53]
Zygmunt, W.A.; Tavormina, P.A. Lysostaphin: model for a specific enzymatic approach to infectious disease. Prog. Drug Res.?1972, 16, 309–333.
[54]
Dajcs, J.J.; Thibodeaux, B.A.; Girgis, D.O.; Shaffer, M.D.; Delvisco, S.M.; O’Callaghan, R.J. Immunity to lysostaphin and its therapeutic value for ocular MRSA infections in the rabbit. Invest. Opthalmol. Visual Sci.?2002, 43, 3712–3716.
[55]
Harrison, F.E.; Cropp, C.B. Comparative in vitro activities of lysostaphin and other antistaphylococcal antibiotics on clinical isolates of Staphylococcus aureus. Appl. Microbiol.?1965, 13, 212–215. 14325881
[56]
Zygmunt, W.A.; Harrison, E.F.; Browder, H.P. Microbiological activities of lysostaphin and penicillins against bacteriophage 80/81 strains of Staphylococcus aureus. Appl. Microbiol.?1965, 13, 491–493. 14325294
[57]
Huber, M.M.; Huber, T.W. Susceptibility of methicillin-resistant Staphylococcus aureus to lysostaphin. J. Clin. Microbiol.?1989, 27, 1122–1124. 2745687
[58]
von Eiff, C.; Kokai-Kun, J.F.; Becker, K.; Peters, G. In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from anterior nares and blood. Antimicrob. Agents Chemother.?2003, 47, 3613–3615, doi:10.1128/AAC.47.11.3613-3615.2003. 14576128
[59]
Polak, J.; Della Latta, P.; Blackburn, P. In vitro activity of recombinant lysostaphin-antibiotic combinations toward methicillin-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis.?1993, 17, 265–270, doi:10.1016/0732-8893(93)90034-5. 8112040
[60]
Graham, S.; Coote, P.J. Potent, synergistic inhibition of Staphylococcus aureus upon exposure to a combination of the endopeptidase lysostaphin and the cationic peptide ranalexin. J. Antimicrob. Chemother.?2007, 59, 759–762, doi:10.1093/jac/dkl539. 17324959
[61]
Harbarth, S.; Sax, H.; Gastmeier, P. The preventable proportion of nosocomial infections: an overview of published reports. J. Hosp. Infect.?2003, 54, 258–266.
Sader, H.S.; Jones, R.N.; Andrade-Baiocchi, S.; Biedenbach, D.J. Four-year evolution of frequency of occurrence and antimicrobial susceptibility patterns of bacteria from bloodstream infections in Latin American medical centers. Diagn. Microbiol. Infect. Dis.?2003, 44, 273–280.
Schudhardt, V.T; Schindler, C.A. Lysostaphin therapy in mice infected with Staphylococcus aureus. J. Bacteriol?1964, 88, 815–816. 14208531
[67]
Dixon, R.E.; Goodman, J.S.; Koenig, M.G. Lysostaphin: an enzymatic approach to staphylococcal disease. III. Combined lysostaphin-methicillin therapy of established staphylococcal abscesses in mice. Yale J. Biol. Med.?1968, 41, 62–68. 5683827
[68]
Harrison, E.F.; Zygmunt, W.A. Lysostaphin in experimental renal infection. J. Bacteriol.?1967, 93, 520–524.
Kiri, N.; Archer, G.; Climo, M.W. Combinations of lysostaphin with β-lactams are synergistic against oxacillin-resistant Staphylococcus epidermidis. Antimicrob. Agents Chemother.?2002, 46, 2017–2020, doi:10.1128/AAC.46.6.2017-2020.2002. 12019130
[71]
Climo, M.W.; Ehlert, K.; Archer, G.L. Mechanism and suppression of lysostaphin resistance in oxacillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.?2001, 45, 1431–1437, doi:10.1128/AAC.45.5.1431-1437.2001. 11302806
[72]
Placencia, F.X.; Kong, L.; Weisman, L.E. Treatment of methicillin-resistant Staphylococcus aureus in neonatal mice: lysostaphin vs. vancomycin. Pediatr. Res.?2009, 65, 420–424, doi:10.1203/PDR.0b013e3181994a53. 19127212
[73]
Oluola, O.; Kong, L.; Fein, M.; Weisman, L.E. Lysostaphin in treatment of neonatal Staphylococcus aureus infection. Antimicrob. Agents Chemother.?2007, 51, 2198–2220, doi:10.1128/AAC.00506-06. 17420212
[74]
Kokai-Kun, J.F.; Chanturiya, T.; Mond, J.J. Lysostaphin as a treatment for systemic Staphylococcus aureus infection in a mouse model. J. Antimicrob. Chemother.?2007, 60, 1051–1059. 17848374
[75]
Kokai-Kun, J.F.; Chanturiya, T.; Mond, J.J. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J. Antimicrob. Chemother.?2009, 64, 94–100, doi:10.1093/jac/dkp145. 19398455
[76]
Kokai-Kun, J.F.; Walsh, S.M.; Chanturiya, T.; Mond, J.J. Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model. Antimicrob. Agents Chemother.?2003, 47, 1589–1597, doi:10.1128/AAC.47.5.1589-1597.2003. 12709327
[77]
Quickel, K.E., Jr.; Selden, R.; Caldwell, J.R.; Nora, N.F.; Schaffner, W. Efficacy and safety of topical lysostaphin treatment of persistent nasal carriage of Staphylococcus aureus. Appl. Microbiol.?1971, 22, 446–450. 4330318
[78]
Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: causes and control. J. Anim. Sci.?2008, 86, 57–65.
Barkema, H.W.; Schukken, Y.H.; Zadoks, R.N. The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci.?2006, 89, 1877–1895, doi:10.3168/jds.S0022-0302(06)72256-1. 16702252
[81]
Sears, P.M.; Smith, B.S.; Pollak, J.; Gusik, S.N.; Blackburn, P. Lysostaphin efficacy for treatment of Staphylococcus aureus intramammary infection. J. Dairy Sci.?1988, 71 (Suppl. 1), 244.
[82]
Oldham, E.R.; Daley, M.J. Lysostaphin: use of a recombinant bactericidal enzyme as a mastitis therapeutic. J. Dairy Sci.?1991, 74, 4175–4182.
[83]
Daley, M.J.; Oldham, E.R. Lysostaphin immunogenicity of locally administered recombinant protein used in mastitis therapy. Vet. Immunol. Immunopathol.?1992, 31, 301–312.
Strandén, A.M.; Ehlert, K.; Labischinski, H.; Berger-B?chi, B. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J. Bacteriol.?1997, 179, 9–16. 8981974
[86]
Rohrer, S.; Berger-B?chi, B. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and ?-lactam resistance in Gram-positive cocci. Antimicrob. Agents Chemother.?2003, 47, 837–846.
[87]
Guignard, B.; Entenza, J.M.; Moreillon, P. Beta-lactams against methicillin-resistant Staphylococcus aureus. Curr. Opin. Pharmacol.?2005, 5, 479–489, doi:10.1016/j.coph.2005.06.002. 16095969
[88]
Morikawa, K.; Maruyama, A.; Inose, Y.; Higashide, M.; Hayashi, H.; Ohta, T. Overexpression of sigma factor, sigma (B), urges Staphylococcus aureus to thicken the cell wall and to resist beta-lactams. Biochem. Biophys. Res. Commun.?2001, 288, 385–389, doi:10.1006/bbrc.2001.5774. 11606054
[89]
Cui, L.; Murakami, H.; Kuwahara-Arai, K.; Hanaki, H.; Hiramatsu, K. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob. Agents Chemother.?2000, 44, 2276–2285, doi:10.1128/AAC.44.9.2276-2285.2000. 10952568